搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空化场中大气泡对空化泡振动的抑制效应分析

黄晨阳 李凡 田华 胡静 陈时 王成会 郭建中 莫润阳

引用本文:
Citation:

空化场中大气泡对空化泡振动的抑制效应分析

黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳

Analysis of the restraining effect of large bubbles on the oscillation of cavitation bubble in cavitation field

Huang Chen-yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-hui, Guo Jian-zhong, Mo Run-yang
PDF
导出引用
  • 为了探究空化场中多气泡之间的相互作用,本文结合观察到的注入的大气泡周围飞舞的小气泡的实验现象,构建了由两个大气泡和一个空化泡组成的三气泡系统,通过考虑气泡间相互作用的时间延迟效应以及大泡的非球形振动,得到修正的气泡动力学方程组,并数值分析了气泡的振动模态、平衡半径、声波压力与频率等参量对小空化气泡的振动行为与所受次级Bjerknes力的影响.结果表明,大气泡的非球形效应主要表现为一种近场效应,对空化泡的振动影响很小,几乎可以忽略不计.大气泡可抑制空化泡的振动,但当大气泡接近于共振半径时,空化泡振动幅值曲线出现共振峰,即存在耦合共振响应.大气泡半径越大,对空化泡抑制作用越强,当空化泡处在两个毫米级大气泡附近时抑制更加显著.声波压力与频率不仅直接影响气泡的振动,还影响空化泡与大气泡之间相互作用的强弱,表现为空化泡所受的次级Bjerknes力在特定的大气泡半径范围内变得对气泡尺寸变化较为敏感,即小的大气泡半径变化可能导致明显的力大小变化,且不同驱动频率下,空化泡所受次级Bjerknes力的敏感半径分布区间不同.空化泡受到的次级Bjerknes力在距离较近或者较远时均可能表现为斥力,与实验观察现象一致.随着声波压力的增加,气泡间距影响下的力响应模式可能不同,甚至可能出现在特定距离内因声反常吸收而导致的作用力减弱现象.
    In this paper, the interaction of multiple bubbles in the cavitation field is investigated in combination with the phenomenon of small bubbles hovering around large bubbles observed experimentally. A model composed of three bubbles is developed and the dynamic behavior of cavitation bubble is analyzed. By considering the time delay effect of the interaction between bubbles and the nonspherical oscillation of large bubbles, the modified bubble dynamic equations are obtained. Numerical results show that the nonspherical effect of large bubbles has little effect on the oscillation of cavitation bubble. The suppressive effect of large bubble on cavitation bubble is closely related to the radius of the large bubble. The larger the size of the large bubble, the stronger the inhibition. When the size of large bubble is close to the resonant radius, the oscillation of cavitation bubble appears coupled resonance response, and the maximum expansion radius of bubble appears resonance peak. The distribution of the secondary Bjerknes force with bubble radius and the separation distances is strongly influenced by driving frequencies or sound pressures. When the large bubble is in the submillimeter order, the strength of the secondary Bjerknes force and the acoustic response mode are different due to the different strength of the nonlinear response of the cavitation bubble. As the distance decreases, when the acoustic pressure increases to a certain value, the secondary Bjerknes force on the cavitation bubble decreases due to abnormal acoustic absorption. The secondary Bjerknes force on cavitation bubble is likely to be repulsive at different separation distances. The theoretical results accord well with experimental phenomenon.
  • [1]

    Neppiras E A 1980 Phys Reports 61 159

    [2]

    Feng R, Zhao Y Y, Chen Z H, Huang J L, Wang S X, Mo X P, Li H M, Zhu C P 1994 Tech Acoust. 13 56[冯若, 赵逸云, 陈兆华, 黄金兰, 王双维, 莫喜平, 李华茂, 朱昌平 1994 声学技术 13 56]

    [3]

    Galleguillos R 2022 Appl. Acoust. 192 108716

    [4]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425

    [5]

    Miller D L 1987 Ultrasound Med. Biol. 13 443

    [6]

    Lu X Z, Chahine G L, Hsiao C T 2012 J. Acoust. Soc. Am. 131 24

    [7]

    Plessett M S, Prosperetti A 1977 Ann. Rev. Fluid Mech. 9 145

    [8]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [9]

    Lauterborn W 1976 J. Acoust. Soc. Am. 59 283

    [10]

    V.F.K. Bjerknes 1906 Fields of Force (New York:Columbia University Press) pp29-55

    [11]

    Lauterborn W, Kurz T 2010 Reports Prog. Phys. 73 106501

    [12]

    Zhang X M, Li F, Wang C, Mo R, Hu J, Guo J, Lin S 2022 Ultrasonics 126 106809

    [13]

    Li F, Zhang X M, Tian H, Hu J, Chen S, Mo R Y, Wang C, Guo J 2022 Ultrason. Sonochem. 87 106057

    [14]

    An Y 2011 Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys. 83 2

    [15]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys. 76 1

    [16]

    Zhang P L, Lin S Y 2009 Acta Phys. Sin. 58 7797[张鹏利, 林书玉 2009 物理学报 58 7797]

    [17]

    Qin D, Zou Q Q, Lei S, Wang W, Li Z Y 2021 Ultrason. Sonochem. 78 105712

    [18]

    Ma Y, Zhang G Q, Ma T 2022 Ultrason. Sonochem. 84 105953

    [19]

    Chen H Y, Chen Z L, Li Y 2020 Ultrason. Sonochem. 61 104814

    [20]

    Li F, Zhang X M, Tian H, Hu J, Chen S, Wang C H, Guo J Z, Mo R Y 2022 Acta Phys. Sin. 71 1[李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳 2022 物理学报 71 1]

    [21]

    Keller J B, Kolodner I I 1956 J. Appl. Phys. 27 1152

    [22]

    Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954

    [23]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E-Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56 2924

    [24]

    Doinikov A A, Zavtrak S T 1996 Ultrasonics 34 807

    [25]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys. 77 1

    [26]

    Nguyen B Q H, Maksymov I S, Suslov S A 2021 Sci. Rep. 11 1

计量
  • 文章访问数:  117
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2023-01-18

空化场中大气泡对空化泡振动的抑制效应分析

  • 陕西师范大学超声学重点实验室, 西安 710062

摘要: 为了探究空化场中多气泡之间的相互作用,本文结合观察到的注入的大气泡周围飞舞的小气泡的实验现象,构建了由两个大气泡和一个空化泡组成的三气泡系统,通过考虑气泡间相互作用的时间延迟效应以及大泡的非球形振动,得到修正的气泡动力学方程组,并数值分析了气泡的振动模态、平衡半径、声波压力与频率等参量对小空化气泡的振动行为与所受次级Bjerknes力的影响.结果表明,大气泡的非球形效应主要表现为一种近场效应,对空化泡的振动影响很小,几乎可以忽略不计.大气泡可抑制空化泡的振动,但当大气泡接近于共振半径时,空化泡振动幅值曲线出现共振峰,即存在耦合共振响应.大气泡半径越大,对空化泡抑制作用越强,当空化泡处在两个毫米级大气泡附近时抑制更加显著.声波压力与频率不仅直接影响气泡的振动,还影响空化泡与大气泡之间相互作用的强弱,表现为空化泡所受的次级Bjerknes力在特定的大气泡半径范围内变得对气泡尺寸变化较为敏感,即小的大气泡半径变化可能导致明显的力大小变化,且不同驱动频率下,空化泡所受次级Bjerknes力的敏感半径分布区间不同.空化泡受到的次级Bjerknes力在距离较近或者较远时均可能表现为斥力,与实验观察现象一致.随着声波压力的增加,气泡间距影响下的力响应模式可能不同,甚至可能出现在特定距离内因声反常吸收而导致的作用力减弱现象.

English Abstract

目录

    /

    返回文章
    返回