搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于猫眼逆反射器的大范围免调试激光器

盛泉 耿婧旎 王爱华 王盟 齐岳 刘俊杰 付士杰 史伟 姚建铨

引用本文:
Citation:

基于猫眼逆反射器的大范围免调试激光器

盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨

Cat-eye retroreflectors based large-dynamic-range alignment-free laser

Sheng Quan, Geng Jing-Ni, Wang Ai-Hua, Wang Meng, Qi Yue, Liu Jun-Jie, Fu Shi-Jie, Shi Wei, Yao Jian-Quan
PDF
HTML
导出引用
  • 利用具有逆反射特性的光学元件构成激光器的谐振腔, 能够赋予激光器大范围免调试工作的潜力. 本文讨论了谐振激光自适应无线传能/通信等新兴应用对激光器免调试工作范围的要求, 设计了基于猫眼逆反射器的大范围免调试激光器, 采用腔内望远镜系统和复合腔结构分别拓展激光器的工作距离范围和提升激光安全性. 通过对激光谐振腔的稳定性分析和对猫眼逆反射器的像差分析, 明确了球差和场曲导致的猫眼离焦分别是限制免调试激光器工作距离和视场的关键因素. 实验中通过优化光学设计补偿像差, 实现了端面泵浦Nd:GdVO4激光器的大范围免调试运转. 16.6 W泵浦功率下, 激光器接收端在1—5 m工作距离范围内移动和在±30°接收端视场范围内转动时输出功率保持在5 W以上, 功率波动小于10%, 无需重新准直调节. 5 m工作距离下, 在4.6°发射端视场内输出功率保持在其最大值的50%以上, 对应接收端横向移动范围达到40 cm. 本工作明确了猫眼腔免调试激光器的设计优化原则, 为相关研究提供了实验结果参考.
    Lasers with cavities consisting of retroreflecting elements can give the potential for large-dynamic-range alignment-free operation, which makes the important applications in adaptive wireless laser power transfer/communication possible. In such an emerging approach based on resonant laser beam in the cavity, the laser is delivered to the photovoltaic cell for charging application (or photodiode for communication application) at the receiver automatically, without the necessity of positioning and aiming the receiver in conventional laser wireless power transfer techniques. The laser capable of operating alignment-free efficiently across large-dynamic-range is essential for the application. In this work, the requirements for the dynamic range of alignment-free operation are summarized. An alignment-free laser with a cavity consisting of cat-eye retroreflectors is designed, and a large alignment-free dynamic range as never before is experimentally demonstrated. Telescope system in the laser cavity is adopted to suppress the beam expansion to enhance the working distance between the laser transmitter and the receiver. Coupled cavity scheme is used to reduce the laser intensity between the transmitter and the receiver for laser safety. By calculating the stability zone of the laser cavity, it is found that the stability zone of the receiver cat-eye distance is quite narrow. Hence, the laser operation is very sensitive to the defocusing of the cat eye defocusing. Moreover, the cat eye defocusing induced by optical aberrations of spherical aberration and field curvature can be rather serious, when the long working distance results in a large beam size and the angle of incidence is large, hence limiting the effective working distance and the field of view of the alignment-free laser significantly. In the experiment, the improved optical designs with the aberrations compensation are adopted for large-dynamic-range alignment-free operation. The end-pumped Nd:GdVO4 laser at 1063 nm can deliver over 5-W output within a working distance range of 1–5 m, and a receiver field of view of ±30°, without cavity realignment. The transmitter field of view reaching 4.6° (full width at half maximum) at a working distance of 5 m is also realized, with a corresponding receiver transverse movement range of 40 cm. Our work clarifies the optimizing criteria of the large-dynamic-range alignment-free laser based on cat-eye retroreflectors.
      通信作者: 付士杰, shijie_fu@tju.edu.cn ; 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975146, 62105240, 62075159)资助的课题.
      Corresponding author: Fu Shi-Jie, shijie_fu@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975146, 62105240, 62075159).
    [1]

    Jin K, Zhou W Y 2019 IEEE Trans. Power Electron. 34 3842Google Scholar

    [2]

    Liu Q W, Wu J, Xia P F, Zhao S J, Yang Y P, Chen W, Hanzo L 2016 IEEE Veh. Technol. Mag. 11 36Google Scholar

    [3]

    Alpert O, Paschotta R 2016 US Patent 9312660 B2

    [4]

    Alpert O, Ronen E, Nahmias O, Mor O R, Golan L, Sagi R 2019 US Patent 10193297 B2

    [5]

    Liu Q W, Xiong M L, Liu M Q, Jiang Q W, Fang W, Bai Y F 2022 IEEE Internet Things J. 9 13876Google Scholar

    [6]

    Lim J Y, Khwaja T S, Ha J Y 2019 Opt. Express 27 A924Google Scholar

    [7]

    Wang W, Gao Y X, Sun D, Du X, Guo J, Liang X Y 2021 Chin. Opt. Lett. 19 111403Google Scholar

    [8]

    Zhang Z, Zhang J W, Zhou Y L, Zhang X, Li Z W, Zhang J Y, Zhang J, Gong Y X, Liu T J, Mu J F, Ning Y Q, Qin L, Wang L J 2022 Opt. Express 30 22364Google Scholar

    [9]

    Javed N, Nguyen N L, Naqvi S F A, Ha J Y 2022 Opt. Express 30 33767Google Scholar

    [10]

    Huang J J, Li X, Zhang J P 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications, Chongqing, China, June 4–7, 2021 p1

    [11]

    Sheng Q, Wang M, Ma H C, Qi Y, Liu J J, Xu D G, Shi W, Yao J Q 2021 Opt. Express 29 34269Google Scholar

    [12]

    Sheng Q, Wang A H, Wang M, Ma H C, Qi Y, Liu J J, Wang S J, Xu D G, Shi W, Yao J Q 2022 Opt. Laser Technol. 151 108011Google Scholar

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [14]

    Sheng Q, Wang A H, Ma Y Y, Wang S J, Wang M, Shi Z, Liu J J, Fu S J, Shi W, Yao J Q, Omatsu T 2022 Photoni X 3 4Google Scholar

    [15]

    刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨 2022 物理学报 71 014204Google Scholar

    Liu J J, Sheng Q, Wang M, Zhang J X, Geng X N, Shi Z, Wang A H, Shi W, Yao J Q 2022 Acta Phys. Sin. 71 014204Google Scholar

    [16]

    Wang M, Ma Y Y, Sheng Q, He X, Liu J J, Shi W, Yao J Q, Omatsu T 2021 Opt. Express 29 27783Google Scholar

    [17]

    Sheng Q, Wang A H, Qi Y, Wang M, Shi Z, Geng J N, Liu J J, Wang S J, Fu S J, Shi W, Yao, J Q 2022 Results Phys. 37 105558Google Scholar

    [18]

    刘俊杰, 齐岳, 盛泉, 王思佳, 王盟, 徐德刚, 史伟, 姚建铨 2022 红外与激光工程 51 20211108Google Scholar

    Liu J J, Qi Y, Sheng Q, Wang S J, Wang M, Xu D G, Shi W, Yao J Q 2022 Infrared Laser Eng. 51 20211108Google Scholar

    [19]

    Liu J J, Wang A H, Sheng Q, Qi Y, Wang S J, Wang M, Xu D G, Fu S J, Shi W, Yao J Q 2022 Chin. Opt. Lett. 20 031407Google Scholar

    [20]

    Lumb M P, Meitl M, Wilson J, Bonafede S, Burroughs S, Forbes D V, Bailey C G, Hoven N M, Hoheisel R, Yakes M K, Polly S J, Hubbard S M, Walters R J 2014 IEEE 40th Photovoltaic Specialist Conference, Denve, USA, June 8–13, 2014 p0491

  • 图 1  基于跟瞄的激光无线传能(a)和谐振激光自适应无线传能(b)示意图

    Fig. 1.  Schematic of the (a) conventional laser power transfer based on acquisition, tracking, and pointing (ATP) system and (b) adaptive resonant beam wireless laser power transfer/communication.

    图 2  免调试激光器的工作距离、接收端视场和发射端视场

    Fig. 2.  Working distance, receiver FoV and transmitter FoV of the alignment-free laser.

    图 3  免调试激光器光路示意图 (a)接收端位于发射端光轴上且朝向发射端; (b)接收端相对发射端光轴存在偏离, 且朝向与振荡光路存在夹角

    Fig. 3.  Schematic of the alignment-free laser: (a) The receiver and the transmitter are on the optical axes of each other; (b) the receiving end deviates from the optical axis of the transmitting end, and the orientation has an angle with the oscillating optical path.

    图 4  不同工作距离d6下接收端猫眼间距d7的稳区

    Fig. 4.  Stability zones of receiver CER distance d7 as a function of working distance d6.

    图 5  使用f = 25 mm的K9平凸球面透镜时球差导致的猫眼逆反射器离焦

    Fig. 5.  CER defocusing induced by the spherical aberration of a K9 plano-convex spherical lens with f = 25 mm.

    图 6  使用f = 25 mm的K9平凸透镜时场曲导致的猫眼逆反射器离焦

    Fig. 6.  CER defocusing induced by the field curvature of a K9 plano-convex lens with f = 25 mm.

    图 7  不同接收端透镜球差条件下激光器的工作距离特性实验结果

    Fig. 7.  The experimental working distance behavior of the laser using receiver lenses with different SA.

    图 8  不同接收端透镜场曲条件下的接收端视场特性实验结果

    Fig. 8.  The experimental receiver FoVs with and without FC of the receiver CER compensated.

    表 1  计算和实验中所用参数

    Table 1.  Parameters used in the experiment and calculation.

    LensesFocal length/mmDistancesLength/mm
    L010d123.8
    L124.6d223
    L224.6d323.8
    L348.3d423
    L425, 50 (51.8)d549.1
    ft500d61000—5000
    下载: 导出CSV

    表 2  面向谐振激光自适应无线传能/通信应用的免调试激光器典型实验结果

    Table 2.  Typical experimental results of alignment-free lasers for adaptive resonant beam charging/communication applications

    YearRetro-
    reflector
    Laser gain
    medium
    Output power/WOptical efficiency/%Working distance/mReceiver FoV/(°)Transmitter FoV/(°)
    2019[6]Corner cubeSOA0.001716.6°
    (only one dimension)
    2021[7]CERNd:YVO4 disk>100.15±13°
    @ 0.15 m
    ±8.3°@0.15 m
    (0 output)
    2022[8]Ball lensEDFA0.430Unlimited
    2022[5]CERNd:YVO4 disk>10~15<3±5.1°@2 m
    (0 output)
    2022[9]CEROptically pumped VECSEL0.8630.5721.37°@0.5 m
    0.47°@2 m
    2021[10]CER0.0122
    Our workCERBulk Nd:GdVO4>5>30>5±30°@5 m4.6°@5 m
    (half maximum)
    下载: 导出CSV
  • [1]

    Jin K, Zhou W Y 2019 IEEE Trans. Power Electron. 34 3842Google Scholar

    [2]

    Liu Q W, Wu J, Xia P F, Zhao S J, Yang Y P, Chen W, Hanzo L 2016 IEEE Veh. Technol. Mag. 11 36Google Scholar

    [3]

    Alpert O, Paschotta R 2016 US Patent 9312660 B2

    [4]

    Alpert O, Ronen E, Nahmias O, Mor O R, Golan L, Sagi R 2019 US Patent 10193297 B2

    [5]

    Liu Q W, Xiong M L, Liu M Q, Jiang Q W, Fang W, Bai Y F 2022 IEEE Internet Things J. 9 13876Google Scholar

    [6]

    Lim J Y, Khwaja T S, Ha J Y 2019 Opt. Express 27 A924Google Scholar

    [7]

    Wang W, Gao Y X, Sun D, Du X, Guo J, Liang X Y 2021 Chin. Opt. Lett. 19 111403Google Scholar

    [8]

    Zhang Z, Zhang J W, Zhou Y L, Zhang X, Li Z W, Zhang J Y, Zhang J, Gong Y X, Liu T J, Mu J F, Ning Y Q, Qin L, Wang L J 2022 Opt. Express 30 22364Google Scholar

    [9]

    Javed N, Nguyen N L, Naqvi S F A, Ha J Y 2022 Opt. Express 30 33767Google Scholar

    [10]

    Huang J J, Li X, Zhang J P 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications, Chongqing, China, June 4–7, 2021 p1

    [11]

    Sheng Q, Wang M, Ma H C, Qi Y, Liu J J, Xu D G, Shi W, Yao J Q 2021 Opt. Express 29 34269Google Scholar

    [12]

    Sheng Q, Wang A H, Wang M, Ma H C, Qi Y, Liu J J, Wang S J, Xu D G, Shi W, Yao J Q 2022 Opt. Laser Technol. 151 108011Google Scholar

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [14]

    Sheng Q, Wang A H, Ma Y Y, Wang S J, Wang M, Shi Z, Liu J J, Fu S J, Shi W, Yao J Q, Omatsu T 2022 Photoni X 3 4Google Scholar

    [15]

    刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨 2022 物理学报 71 014204Google Scholar

    Liu J J, Sheng Q, Wang M, Zhang J X, Geng X N, Shi Z, Wang A H, Shi W, Yao J Q 2022 Acta Phys. Sin. 71 014204Google Scholar

    [16]

    Wang M, Ma Y Y, Sheng Q, He X, Liu J J, Shi W, Yao J Q, Omatsu T 2021 Opt. Express 29 27783Google Scholar

    [17]

    Sheng Q, Wang A H, Qi Y, Wang M, Shi Z, Geng J N, Liu J J, Wang S J, Fu S J, Shi W, Yao, J Q 2022 Results Phys. 37 105558Google Scholar

    [18]

    刘俊杰, 齐岳, 盛泉, 王思佳, 王盟, 徐德刚, 史伟, 姚建铨 2022 红外与激光工程 51 20211108Google Scholar

    Liu J J, Qi Y, Sheng Q, Wang S J, Wang M, Xu D G, Shi W, Yao J Q 2022 Infrared Laser Eng. 51 20211108Google Scholar

    [19]

    Liu J J, Wang A H, Sheng Q, Qi Y, Wang S J, Wang M, Xu D G, Fu S J, Shi W, Yao J Q 2022 Chin. Opt. Lett. 20 031407Google Scholar

    [20]

    Lumb M P, Meitl M, Wilson J, Bonafede S, Burroughs S, Forbes D V, Bailey C G, Hoven N M, Hoheisel R, Yakes M K, Polly S J, Hubbard S M, Walters R J 2014 IEEE 40th Photovoltaic Specialist Conference, Denve, USA, June 8–13, 2014 p0491

  • [1] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] 张柏富, 朱康, 武恒, 胡海峰, 沈哲, 许吉. 双凹型谐振腔结构的金属半导体纳米激光器的数值仿真. 物理学报, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [3] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [4] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [5] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究. 物理学报, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [6] 张小军, 杨富, 王勇刚, 孙利群, 文侨, 牛憨笨. 基于传播圆补偿像散的被动锁模激光器谐振腔设计方法. 物理学报, 2013, 62(2): 024211. doi: 10.7498/aps.62.024211
    [7] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究. 物理学报, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [8] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [9] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [10] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析. 物理学报, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [11] 皮道锐, 黄元申, 张大伟, 倪争技, 庄松林. 宽光谱平像场全息凹面光栅的优化研究. 物理学报, 2010, 59(2): 1009-1016. doi: 10.7498/aps.59.1009
    [12] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [13] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [14] 吴 坚. AlInGaAs垂直谐振腔顶面发射半导体激光器横向温度效应的解析热模型及其表征. 物理学报, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [15] 许志广, 张书练, 李 岩, 杜文华. 猫眼谐振腔氦氖激光器理论分析. 物理学报, 2006, 55(9): 4665-4672. doi: 10.7498/aps.55.4665
    [16] 顾培夫, 黄弼勤, 郑臻荣. 用于可见光区的薄膜光子晶体全角度反射器. 物理学报, 2005, 54(8): 3707-3710. doi: 10.7498/aps.54.3707
    [17] 席再军, 郑启光, 秦应雄, 余本海, 童杏林. 多棒串接固体激光器谐振腔的研究. 物理学报, 2003, 52(6): 1396-1402. doi: 10.7498/aps.52.1396
    [18] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算. 物理学报, 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
    [19] 唐晓军, 赵宗海, 辛建国. 射频激励相移阵列谐振腔波导CO2激光器输出特性研究. 物理学报, 1999, 48(7): 1236-1247. doi: 10.7498/aps.48.1236
    [20] 吴中祥. 激光器谐振腔中辐射能量密度须按场强叠加计算. 物理学报, 1980, 29(3): 392-394. doi: 10.7498/aps.29.392
计量
  • 文章访问数:  2522
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2022-11-08
  • 上网日期:  2022-11-28
  • 刊出日期:  2023-02-20

/

返回文章
返回