搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LCP /TLC的复合多维偏振型防伪器件

朱雨雯 袁丛龙 刘炳辉 王骁乾 郑致刚

引用本文:
Citation:

基于LCP /TLC的复合多维偏振型防伪器件

朱雨雯, 袁丛龙, 刘炳辉, 王骁乾, 郑致刚

LCP /TLC based composite multi-dimensional polarization-dependent anti-counterfeiting device

Zhu Yu-Wen, Yuan Cong-Long, Liu Bing-Hui, Wang Xiao-Qian, Zheng Zhi-Gang
PDF
HTML
导出引用
  • 现代防伪技术的发展可有效抑制和打击伪造仿冒行为, 在信息安全、国防和经济等领域具有重要意义. 然而, 实现多维度、集成化、难复制且便于检测的光学防伪器件仍是一个挑战. 本文设计了一种基于图案化液晶聚合物(LCP)薄膜与热致变色胆甾相(TLC)复合而成的多维偏振型防伪器件, 它具有偏振态显现-隐藏、颜色调谐范围广、操作便捷、集成度及安全性高等优点. 对于特定偏振态的入射光, 图案化向列相LCP层可对其进行区域化相位编辑产生偏振态调制, 而TLC层对该入射光进行选择性反射, 因此巧妙地实现了一种图案化结构色防伪标签. 该防伪器件可通过调整入射光偏振方向实现彩色图案的显现、隐藏、色彩调节及图底转换. 此外, 该器件中的TLC层不仅可通过灵活设计体系配比, 满足不同环境温度对该防伪器件的应用需求, 增强其环境适用性, 还可便捷地利用体温进行加热, 实现图案的动态实时宽谱域色彩调制及可逆的图案擦除, 进一步增强其防伪维度与安全性. 本文所述器件为防伪领域的发展提供了崭新的思路.
    Modern anti-counterfeiting technology can effectively suppress and combat forgery and counterfeiting behaviors, which is of great significance in information security, national defense and economy. However, the realization of multi-dimensional, integrated, difficult-to-copy and easy-to-detect optical anti-counterfeiting devices is still a challenge. In this paper, a multi-dimensional and polarization-dependent anti-counterfeiting device with structure color is designed, which is composed of patterned liquid crystal polymer (LCP) nematic layer and thermotropic cholesteric liquid crystal (TLC) layer. It has the advantages of displaying and hiding polarization states, wide color tuning range, convenient operation, high integration and security. For incident light with a specific polarization state, the patterned nematic phase LCP layer can carry out regionalized phase editing and polarization state modulation, while the TLC layer can selectively reflect the incident light. Therefore, a patterned structural color security label is subtly realized. The anti-counterfeiting device can realize the display, hiding, color adjustment and image/background conversion of patterns by adjusting the polarization direction of incident light. In addition, the TLC layer in the device can meet the application requirements of the anti-counterfeit device at different environmental temperatures through the flexible design of the system weight ratio. Furthermore, the device can be easily heated by body temperature, realize dynamic real-time wide-spectrum color modulation and reversible pattern erasure, and further enhance its security dimension and security. The multi-polarization-type anti-counterfeiting device has three-dimensional anti-counterfeiting efficacy. The first dimensional anti-counterfeiting efficacy is achieved by the thermochromic liquid crystal layer. The thermochromic liquid crystal layer has no reflection color outside the operating temperature range of TLC material, and the entire device displays black background. The second and the third dimensional anti-counterfeiting efficacy are related to the polarization state of the incident light and the linear polarization direction, respectively. Only when the incident light is linearly polarized light and its polarization direction makes an angle of 45° or –45° with respect to the optical axis of the liquid crystal, will the device show the designed pattern. Consequently, our proposed anti-counterfeiting device is expected to provide a new idea for developing the anti-counterfeiting field.
      通信作者: 王骁乾, xqwang@ecust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1203700)、国家自然科学基金(批准号: 61822504, 62275081, 62035008)、上海市“曙光”计划(批准号: 21SG29)、上海市教育委员会和上海市科技创新计划重大项目(批准号: 2021-01-07-00-02-E00107)资助的课题.
      Corresponding author: Wang Xiao-Qian, xqwang@ecust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1203700), the National Natural Science Foundation of China (Grant Nos. 61822504, 62275081, 62035008), the “Shuguang” Program of Shanghai, China (Grant No. 21SG29), the Shanghai Municipal Education Commission, China, and the Scientific Innovation Major Program of Shanghai Scientific and Technology Committee, China (Grant No. 2021-01-07-00-02-E00107).
    [1]

    Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar

    [2]

    Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar

    [3]

    Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar

    [4]

    Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar

    [5]

    Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar

    [6]

    Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar

    [7]

    Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar

    [8]

    Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985

    [9]

    Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar

    [10]

    Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar

    [11]

    Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar

    [12]

    Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar

    [13]

    Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar

    [14]

    Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar

    [15]

    Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar

    [16]

    Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar

    [17]

    Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919

    [18]

    Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar

    [19]

    Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047

    [20]

    Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar

    [21]

    Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar

    [22]

    Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18

    [23]

    Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar

    [24]

    Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar

    [25]

    Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226

    [26]

    Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar

    [27]

    Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar

    [28]

    Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665

    [29]

    Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar

    [30]

    Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar

    [31]

    Mitov M 2012 Adv. Mater. 24 6260Google Scholar

    [32]

    Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar

    [33]

    Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar

    [34]

    Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar

    [35]

    Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar

    [36]

    Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar

    [37]

    Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar

    [38]

    Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266

    [39]

    Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar

    [40]

    Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar

    [41]

    Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar

    [42]

    Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar

    [43]

    Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar

    [44]

    van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar

    [45]

    Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar

  • 图 1  胆甾醇衍生物COC, CN, CD的化学结构

    Fig. 1.  Chemical structures of the cholesterol derivatives COC, CN, and CD.

    图 2  集成式防伪器件的结构.

    Fig. 2.  The structure of integrally anti-counterfeiting device.

    图 3  复合多维偏振型防伪器件的防伪工作原理示意图

    Fig. 3.  Schematic drawing of working principle of composite multi-dimensional polarization dependent anti-counterfeiting device.

    图 4  样品 S2 的 (a) 反射光谱及 (b) 织构随温度的变化. 正交双箭头代表正交偏振片

    Fig. 4.  The variation of (a) the reflection spectra and (b) the textures of sample S2 with temperature. Orthogonal double arrows represent the crossed polarizers.

    图 5  基于热致变色理论模型的拟合结果. 其中, 实线代表拟合值, 点代表实验测量值

    Fig. 5.  The fitting results based on thermochromic theoretical model. Herein, the solid lines represent the fitting values and the points represent the experimental measurement values

    图 6  自然光及不同偏振方向入射光下样品图案的温度依赖性. Δα = αiαv 代表入射光偏振方向 αi 与箭头区域光轴方向 αv 之间的夹角. 白色箭头代表不同区域相应的光轴方向

    Fig. 6.  Temperature dependence of sample pattern under natural light and linearly polarized light with different polarization directions. Δα = αiαv represents the angle between the polarization direction of the incident light αi and the optical axis direction of the arrow region αv. The white arrows represent the corresponding optical axis directions in different regions.

    图 7  线偏振入射光(αi = π/4)照射下, S1, S3及S6体系制备的多维偏振型防伪器件在10—40 ℃的热致变色效果

    Fig. 7.  Thermochromic effect of multi-polarization security devices prepared by S1, S3 and S6 systems under linearly polarized incident light (αi = π/4) at 10 ℃ to 40 ℃

    表 1  不同样品中COC/CN/CD混合材料与TEB300的质量分数和温度参数

    Table 1.  Weight content and temperature parameters of COC/CN/CD material and TEB300 in different samples.

    样品COC/CN/
    CD/%
    TEB300/%可见光波段
    显色温度
    范围/℃
    温宽/℃
    S1100.0029.3—37.58.2
    S297.03.022.5—32.510.0
    S396.33.720.0—29.59.5
    S495.34.717.5—28.510.5
    S594.35.715.0—26.511.5
    下载: 导出CSV

    表 2  基于热致变色理论模型的各系数拟合值

    Table 2.  The fitting value of each coefficient based on thermochromic theoretical model.

    λ0/nmTc/℃c′/(nm·℃ν)ν
    S1198.57525.7421299.8930.699
    S2172.00418.0261607.3920.699
    S3141.65115.0141852.1180.699
    S4124.27411.4312188.5080.699
    S5120.6538.5542288.7440.699
    下载: 导出CSV
  • [1]

    Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar

    [2]

    Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar

    [3]

    Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar

    [4]

    Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar

    [5]

    Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar

    [6]

    Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar

    [7]

    Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar

    [8]

    Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985

    [9]

    Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar

    [10]

    Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar

    [11]

    Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar

    [12]

    Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar

    [13]

    Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar

    [14]

    Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar

    [15]

    Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar

    [16]

    Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar

    [17]

    Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919

    [18]

    Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar

    [19]

    Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047

    [20]

    Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar

    [21]

    Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar

    [22]

    Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18

    [23]

    Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar

    [24]

    Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar

    [25]

    Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226

    [26]

    Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar

    [27]

    Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar

    [28]

    Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665

    [29]

    Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar

    [30]

    Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar

    [31]

    Mitov M 2012 Adv. Mater. 24 6260Google Scholar

    [32]

    Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar

    [33]

    Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar

    [34]

    Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar

    [35]

    Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar

    [36]

    Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar

    [37]

    Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar

    [38]

    Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266

    [39]

    Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar

    [40]

    Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar

    [41]

    Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar

    [42]

    Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar

    [43]

    Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar

    [44]

    van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar

    [45]

    Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar

  • [1] 陈昊鹏, 聂永杰, 李国倡, 魏艳慧, 胡昊, 鲁广昊, 李盛涛, 朱远惟. 聚合物分散液晶薄膜的极化特性及其对电光性能的影响. 物理学报, 2023, 72(17): 177701. doi: 10.7498/aps.72.20230664
    [2] 贾朝阳, 高当丽, 于佳, 胡媛媛, 柴瑞鹏, 庞庆, 张翔宇. 镧系离子掺杂Li0.9K0.1NbO3荧光粉的多色多模荧光调控及防伪应用. 物理学报, 2023, 72(22): 224210. doi: 10.7498/aps.72.20230517
    [3] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达. 嵌入式三色光变器. 物理学报, 2017, 66(12): 124201. doi: 10.7498/aps.66.124201
    [4] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究. 物理学报, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [5] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器. 物理学报, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [6] 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 全息液晶/聚合物透射光栅光学各向异性的研究. 物理学报, 2012, 61(9): 094208. doi: 10.7498/aps.61.094208
    [7] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [8] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究. 物理学报, 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [9] 李文萃, 刘永刚, 宣丽. 表面摩擦处理对全息聚合物分散液晶光栅电光特性的影响. 物理学报, 2011, 60(4): 046101. doi: 10.7498/aps.60.046101
    [10] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [11] 郑继红, 钟阳万, 温垦, 骆鑫盛, 庄松林. 电控聚合物分散液晶全息透镜及特性研究. 物理学报, 2010, 59(3): 1831-1838. doi: 10.7498/aps.59.1831
    [12] 田勇, 潘煦, 王长顺, 张小强, 曾艺. 偶氮液晶聚合物薄膜的二维偏振全息记录. 物理学报, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [13] 郑致刚, 李文萃, 刘永刚, 宣 丽. 双重复合式液晶/聚合物电调谐光栅的制备. 物理学报, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [14] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [15] 张 斌, 刘言军, 徐克璹. 全息聚合物弥散液晶器件电光特性的研究. 物理学报, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [16] 张斌, 刘言军, 徐克舒, 贾 瑜. 全息聚合物弥散液晶材料衍射特性的优化. 物理学报, 2003, 52(1): 91-95. doi: 10.7498/aps.52.91
    [17] 梁忠诚, 明海, 王沛, 章江英, 龙云泽, 夏勇, 谢建平, 张其锦. 偶氮液晶聚合物中的非线性光致双折射. 物理学报, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [18] 刘红. 梳型聚合物液晶的介电反应. 物理学报, 2000, 49(4): 781-785. doi: 10.7498/aps.49.781
    [19] 李建军, 王宗凯, 凌志华, 田颜清, 黄锡珉. 聚合物网络稳定铁电液晶中的条纹织构的研究. 物理学报, 1998, 47(8): 1311-1317. doi: 10.7498/aps.47.1311
    [20] 刘红. 梳型高分子聚合物向列相液晶的相变. 物理学报, 1992, 41(4): 609-616. doi: 10.7498/aps.41.609
计量
  • 文章访问数:  2244
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-06-22
  • 上网日期:  2023-07-07
  • 刊出日期:  2023-09-05

/

返回文章
返回