搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门

豆树清 杨晓阔 夏永顺 袁佳卉 崔焕卿 危波 白馨 冯朝文

引用本文:
Citation:

一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门

豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文

A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock

Dou Shu-Qing, Yang Xiao-Kuo, Xia Yong-Shun, Yuan Jia-Hui, Cui Huan-Qing, Wei Bo, Bai Xin, Feng Chao-Wen
PDF
HTML
导出引用
  • 利用正、负磁致伸缩系数材料(Terfenol-D, Ni)对相同应变的响应差异, 提出了一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门, 设计了“高应力启动-低应力计算”的两步择多计算模式, 使用MuMax3微磁学仿真软件建立了该器件的微磁学模型, 并研究了其能量演化情况和周期能耗. 仿真结果表明: 异质多铁结构全局应变时钟纳磁体择多逻辑门能够成功地对任意的3端输入组合连续执行择多计算; 应用两步择多计算模式, 该器件计算正确率可达100%, 其执行连续计算的周期为2.75 ns, 周期能耗约64 aJ. 研究发现: 应力各向异性能和偶极子耦合能变化引起的能量势阱变化是决定该器件磁化动力学行为的主要原因. 本文研究结果可为纳米磁逻辑电路的设计提供重要指导.
    In the post-Moore era, nanomagnetic logic circuits have shown great potential to replace complementary metal oxide semiconductor (CMOS) circuits. A majority logic gate, as the core of a nanomagnetic logic circuit, is equivalent to the inverter in the CMOS circuit. A nanomagnetic logic majority gate generally has four nanomagnets arranged in a “T” shape. The nanomagnets in the three corners of the “T” (I1, I2, I3) are the three inputs, and the middle nanomagnet is the output (O).This paper proposes a nanomagnet majority logic gate based on the global strain clock of heterogeneous multiferroic structure, by utilizing the difference in response to the same strain between positive magnetostrictive coefficient material (Terfenol-D) and negative magnetostrictive coefficient material (Ni). From bottom to top, the device is mainly composed of a silicon substrate, a piezoelectric layer, and four elliptical cylindrical nanomagnets. PMN-PT is used as the piezoelectric layer’s material, and three Ni-based nanomagnets (I1, I2, and I3) are utilized as input, while Terfenol-D is used as the material for the output nanomagnet (O).Besides, a two-step calculation mode of “high-stress start-low-stress calculation” is designed, that is, the O is first switched to the “Null” with a stress of –30 MPa, and then the stress decreases to –15 MPa, so that the O can realize majority calculation under the coupling of I1, I2, and I3. The micromagnetic simulation software MuMax3 is adopted to simulate the performance of the device. The results reveal that the device can successfully perform continuous majority calculation through any three-terminal input combination. By using the two-step calculation mode, the calculation accuracy of the device can reach 100%, its cycle of continuous calculation is 2.75 ns, and the cycle energy consumption is about 64 aJ. It is found that the change of energy potential well, caused by the change of stress anisotropy energy and dipole coupling energy, is the main reason that determines the magnetization dynamic behavior of the device. Therefore, the results of this paper can provide important guidance for designing nanomagnetic logic circuits.
      通信作者: 杨晓阔, yangxk0123@163.com
    • 基金项目: 国家自然科学基金(批准号: 62274183)和陕西省自然科学基础研究计划(批准号: 2022JQ-073)资助的课题.
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62274183) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2022JQ-073).
    [1]

    DeBenedictis, P E 2017 Computer 50 72Google Scholar

    [2]

    Liu S L, Hu X S, Nahas J J, Niemier M T, Porod W, Bernstein G H 2011 IEEE Trans. Nanotechnol. 10 757Google Scholar

    [3]

    Gypens P, Leliaert J, Van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004Google Scholar

    [4]

    Gonelli M, Fin S, Carlotti G, Dey H, Csaba G, Porod W, Bernstein G H, Bisero D 2018 J. Magn. Magn. Mater. 460 432Google Scholar

    [5]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G, Porod W 2006 Science 311 205Google Scholar

    [6]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G 2008 J. Nanoelectron. Optoelectron. 3 55Google Scholar

    [7]

    刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [8]

    Carlton D B, Lambson B, Scholl A, Young A T, Dhuey S D, Ashby P D, Tuchfeld E, Bokor J 2011 IEEE Trans. Nanotechnol. 10 1401Google Scholar

    [9]

    Gu Z, Nowakowski M E, Carlton D B, Storz R, Im M Y, Hong J, Chao W, Lambson B, Bennett P, Alam M T, Marcus M A, Doran A, Young A, Scholl A, Fischer P, Bokor J 2015 Nat. Commun. 6 6466Google Scholar

    [10]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [11]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105Google Scholar

    [12]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [13]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2011 IEEE Trans. Nanotechnol. 11 273Google Scholar

    [14]

    张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503Google Scholar

    Zhang M L, Cai L, Yang X K, Qin T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503Google Scholar

    [15]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [16]

    Suh D I, Bae G Y, Oh H S, Park W 2015 J. Appl. Phys. 117 17D714Google Scholar

    [17]

    Sengupta A, Choday S H, Kim Y, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [18]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [19]

    Liu M, Zou Q, Ma C R, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interfaces 6 8526Google Scholar

    [20]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D:Appl. Phys. 50 285001Google Scholar

    [21]

    Yuan J H, Yang X K, Wei B, Chen Y B, Cui H Q, Liu J H, Dou S Q, Song M X, Fei L 2023 Phys. Rev. Appl. 19 014003Google Scholar

    [22]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [23]

    危波, 蔡理, 杨晓阔, 李成 2017 物理学报 66 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2017 Acta Phys. Sin. 66 217501Google Scholar

    [24]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. Very Large Scale Integr. VLSI Syst. 21 1181Google Scholar

    [25]

    D’Souza N, Salehi Fashami M, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [26]

    Chen Y B, Yang X K, Wei B, Cui H Q, Song M X 2020 IEEE Access 8 77802Google Scholar

    [27]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [28]

    Chen A T, Piao H G, Zhang C H, Ma X P, Algaidi H, Ma Y C, Li Y, Zheng D X, Qiu Z D, Zhang X X 2023 Mater. Horiz. DOI: 10.1039/d3mh00378

    [29]

    Khojah R, Xiao Z, Panduranga M K, Bogumil M, Wang Y, Goiriena-Goikoetxea M, Chopdekar R V, Bokor J, Carman G P, Candler R N, Di Carlo D 2021 Adv. Mater. 33 2006651Google Scholar

    [30]

    Huang B, Zhu W, Hua L, Wang J, Guo Y 2022 Curr. Appl. Phys. 41 139Google Scholar

    [31]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [32]

    Pathak P, Mallick D 2022 IEEE Trans. Magn. 58 3401406Google Scholar

    [33]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412Google Scholar

    [34]

    Bhattacharya D, Al-Rashid M M, D'Souza N, Bandyopadhyay S, Atulasimha J 2017 Nanotechnology 28 015202Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D: Appl. Phys. 38 3333Google Scholar

    [37]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [38]

    Fidler J, Schrefl T 2000 J. Phys. D:Appl. Phys. 33 R135Google Scholar

    [39]

    Boechler G P, Whitney J M, Lent C S, Orlov A O, Snider G L 2010 Appl. Phys. Lett. 97 103502Google Scholar

  • 图 1  椭圆柱体纳磁体布尔逻辑编码方式

    Fig. 1.  Cylindrical elliptical nanomagnet logic coding for Booleans.

    图 2  NMLC组件 (a)择多逻辑门 (b) 铁磁耦合互连线; (c) 反铁磁耦合互连线

    Fig. 2.  NMLC Components: (a) Majority gate; (b) ferromagnetic coupling interconnect wire; (c) anti-ferromagnetic coupling interconnect wire.

    图 3  异质多铁结构全局应变时钟纳磁体择多逻辑门 (a) 立体结构; (b) 俯视图

    Fig. 3.  Nanomagnets majority gate based on global strain clock of heterogeneous multiferroic structure: (a) Stereo structure; (b) top view.

    图 4  应变时钟作用示意图

    Fig. 4.  Schematic diagram of strain clock.

    图 5  异质多铁择多门连续工作磁化动态过程 (a) 初始态000, 输入依次为“101”, “000”, “111”和“001”时的磁化动态曲线; (b) 第3周期, 即“0000”条件下输入“111”择多计算详细磁化动态过程; (c)—(n) 异质多铁择多门中纳磁体磁化状态

    Fig. 5.  Magnetization dynamic process of the majority gate continuously work: (a) The dynamics of the magnetization curve when the initial state is “000” and the input is “101”, “000”, “111”, “001” in sequence; (b) the detailed magnetization dynamic process calculated at the third cycle, i.e., at input “111” under “0000” conditions; (c)–(n) magnetization states of nanomagnets in the majority gate.

    图 6  纳磁体能量势垒方向及其能量势阱方向 (a) 能量势阱附近的单侧波动; (b) 跨越短轴的双侧波动; (c) 施加极性相反的电压时或者撤去电压后, 磁矩进动的方向

    Fig. 6.  Nanomagnet’s energy potential well direction and its energy barrier direction: (a) Unilateral fluctuations near the energy potential well; (b) bilateral fluctuations across the short axis; (c) the direction of the magnetic moment progresses when a voltage of opposite polarity is applied or when the voltage is removed.

    图 7  异质多铁择多门所有择多计算情形下, O的磁矩的动态变化. 0—0.5 ns, 施加–30 MPa应力; 0.5—3 ns, 施加–15 MPa应力. “000-0”代表初始状态为: I1I2I3 = 000, O = 0时O的磁矩的动态变化曲线

    Fig. 7.  Dynamic variation of the magnetic moment of O for all calculation cases of the logic gate. 0–0.5 ns, –30 MPa stress applied; 0.5–3 ns, –15 MPa stress applied. “000-0” represents the dynamic variation of the magnetic moment of O when the initial state is: I1I2I3 = 000 and O = 0.

    图 8  信息传出逻辑门的所有情形下, OTO的磁矩的动态变化. 全局应变时钟: 0—0.5 ns, 施加–30 MPa应力; 0.5—1.5 ns, 施加–15 MPa应力; 1.5—2.5 ns, 施加250 MPa应力. TO控制时钟: 0—2.5 ns, 施加300 MPa应力. “000-0”代表初始状态为: I1I2I3 = 000且O = 0时, O的磁矩的动态曲线; “0000-0”代表初始状态为: I1I2I3O = 0000且TO = 0时, TO的磁矩的动态曲线

    Fig. 8.  Dynamic variation of the magnetic moments of O and TO for all cases of information passing out of the logic gate. Global strain clock: 0–0.5 ns, –30 MPa stress applied; 0.5–1.5 ns, –15 MPa stress applied; 1.5–2.5 ns, 250 MPa stress applied. TO control clock: 0–2.5 ns, 300 MPa stress applied. “000-0” represents the dynamic curve of the magnetic moment of O when the initial state is: I1I2I3 = 000 and O = 0; “0000-0” represents the dynamic curve of the magnetic moment of TO when the initial state is: I1I2I3O = 0000 and TO = 0.

    图 9  异质多铁择多门连续计算时的能量演化 (a) 全局应变时钟; (b)—(f) I1, I2, I3, OTO的能量密度; (g) TO 控制时钟

    Fig. 9.  Energy evolution during continuous computation of the logic gate: (a) Global strain clock; (b)–(f) energy density of I1, I2, I3, O and TO; (g) control the clock of TO.

    图 10  纳磁体磁矩偏转90° (a)—(c) 一致的单畴态偏转; (a), (d)—(g), (c) 非一致的“C”形态偏转

    Fig. 10.  Nanomagnet magnetic moment switching 90°: (a)–(c) Uniform single-domain Switching; (a), (d)–(g), (c) non-uniform “C” form Switching.

    表 1  器件尺寸及布局参数

    Table 1.  Parameters of the device size and layout.

    名称尺寸/nm名称尺寸/nm
    所有纳磁体长轴 a120I2O间距 l180
    所有纳磁体厚度 h10I1, I3O间距 l2120
    O的短轴 b190TOO间距 l350
    其余纳磁体短轴 b280T1, T2, T3分别
    I2, I2, I3
    水平间距 l4
    20
    压电层长度 ly700T1, T2, T 3分别
    I2, I2, I3
    垂直中心距 l5
    80
    压电层宽度 lx265压电层厚度 lz100
    下载: 导出CSV

    表 2  纳磁体材料参数

    Table 2.  Material parameters of nanomagnets.

    Terfenol-DNi
    杨氏模量 Y/1010 Pa821.4
    磁致伸缩系数 λS/10–4+6–0.2
    吉尔伯特阻尼系数 α0.10.045
    饱和磁化强度 MS/(105 A·m–1)84.85
    交换作用常数 A/(10–11 J·m–1)0.91.05
    下载: 导出CSV

    表 3  应变时钟参数

    Table 3.  Strain clock parameters.

    时钟参数数值/MPa时钟参数数值/ns
    σ+250t11.25
    σH––30t21.75
    σL––15t32.75
    $ \sigma_{T_{O} } $300t43
    下载: 导出CSV
  • [1]

    DeBenedictis, P E 2017 Computer 50 72Google Scholar

    [2]

    Liu S L, Hu X S, Nahas J J, Niemier M T, Porod W, Bernstein G H 2011 IEEE Trans. Nanotechnol. 10 757Google Scholar

    [3]

    Gypens P, Leliaert J, Van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004Google Scholar

    [4]

    Gonelli M, Fin S, Carlotti G, Dey H, Csaba G, Porod W, Bernstein G H, Bisero D 2018 J. Magn. Magn. Mater. 460 432Google Scholar

    [5]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G, Porod W 2006 Science 311 205Google Scholar

    [6]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G 2008 J. Nanoelectron. Optoelectron. 3 55Google Scholar

    [7]

    刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [8]

    Carlton D B, Lambson B, Scholl A, Young A T, Dhuey S D, Ashby P D, Tuchfeld E, Bokor J 2011 IEEE Trans. Nanotechnol. 10 1401Google Scholar

    [9]

    Gu Z, Nowakowski M E, Carlton D B, Storz R, Im M Y, Hong J, Chao W, Lambson B, Bennett P, Alam M T, Marcus M A, Doran A, Young A, Scholl A, Fischer P, Bokor J 2015 Nat. Commun. 6 6466Google Scholar

    [10]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [11]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105Google Scholar

    [12]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [13]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2011 IEEE Trans. Nanotechnol. 11 273Google Scholar

    [14]

    张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503Google Scholar

    Zhang M L, Cai L, Yang X K, Qin T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503Google Scholar

    [15]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [16]

    Suh D I, Bae G Y, Oh H S, Park W 2015 J. Appl. Phys. 117 17D714Google Scholar

    [17]

    Sengupta A, Choday S H, Kim Y, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [18]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [19]

    Liu M, Zou Q, Ma C R, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interfaces 6 8526Google Scholar

    [20]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D:Appl. Phys. 50 285001Google Scholar

    [21]

    Yuan J H, Yang X K, Wei B, Chen Y B, Cui H Q, Liu J H, Dou S Q, Song M X, Fei L 2023 Phys. Rev. Appl. 19 014003Google Scholar

    [22]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [23]

    危波, 蔡理, 杨晓阔, 李成 2017 物理学报 66 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2017 Acta Phys. Sin. 66 217501Google Scholar

    [24]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. Very Large Scale Integr. VLSI Syst. 21 1181Google Scholar

    [25]

    D’Souza N, Salehi Fashami M, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [26]

    Chen Y B, Yang X K, Wei B, Cui H Q, Song M X 2020 IEEE Access 8 77802Google Scholar

    [27]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [28]

    Chen A T, Piao H G, Zhang C H, Ma X P, Algaidi H, Ma Y C, Li Y, Zheng D X, Qiu Z D, Zhang X X 2023 Mater. Horiz. DOI: 10.1039/d3mh00378

    [29]

    Khojah R, Xiao Z, Panduranga M K, Bogumil M, Wang Y, Goiriena-Goikoetxea M, Chopdekar R V, Bokor J, Carman G P, Candler R N, Di Carlo D 2021 Adv. Mater. 33 2006651Google Scholar

    [30]

    Huang B, Zhu W, Hua L, Wang J, Guo Y 2022 Curr. Appl. Phys. 41 139Google Scholar

    [31]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [32]

    Pathak P, Mallick D 2022 IEEE Trans. Magn. 58 3401406Google Scholar

    [33]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412Google Scholar

    [34]

    Bhattacharya D, Al-Rashid M M, D'Souza N, Bandyopadhyay S, Atulasimha J 2017 Nanotechnology 28 015202Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D: Appl. Phys. 38 3333Google Scholar

    [37]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [38]

    Fidler J, Schrefl T 2000 J. Phys. D:Appl. Phys. 33 R135Google Scholar

    [39]

    Boechler G P, Whitney J M, Lent C S, Orlov A O, Snider G L 2010 Appl. Phys. Lett. 97 103502Google Scholar

  • [1] 高金玮, 陈璐, 李旭洪, 史俊勤, 曹腾飞, 范晓丽. 具有磁弹耦合的本征多铁半导体: 单分子层MoTeX (X = F, Cl, Br, I). 物理学报, 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [2] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] 权东晓, 吕晓杰, 张雯菲. 多逻辑比特表面码结构设计及其逻辑CNOT门实现. 物理学报, 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [4] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [5] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [6] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展. 物理学报, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [7] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [8] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究. 物理学报, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] 陈爱天, 赵永刚. 多铁异质结构中逆磁电耦合效应的研究进展. 物理学报, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] 宋骁, 高兴森, 刘俊明. 微纳尺度多铁异质结中电驱动磁反转. 物理学报, 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [11] 危波, 蔡理, 杨晓阔, 李成. 基于多铁纳磁体的择多逻辑门三维磁化动态特性研究. 物理学报, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [12] 王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯. 基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究. 物理学报, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [13] 杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森. 基于多铁逻辑的铁磁耦合互连线磁化动态模拟. 物理学报, 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [14] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [15] 张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森. 基于交换作用的纳磁逻辑电路片上时钟结构研究. 物理学报, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [16] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [17] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [18] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究. 物理学报, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [19] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [20] 刘天亮, 黄海军. 日常择路行为的多智能体模拟. 物理学报, 2007, 56(11): 6321-6325. doi: 10.7498/aps.56.6321
计量
  • 文章访问数:  3499
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 修回日期:  2023-07-03
  • 上网日期:  2023-07-07
  • 刊出日期:  2023-08-05

/

返回文章
返回