搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd3+:GdScO3晶体场能级及拟合分析

樊颖 张庆礼 高进云 高宇茜 黄磊 刘耀

引用本文:
Citation:

Nd3+:GdScO3晶体场能级及拟合分析

樊颖, 张庆礼, 高进云, 高宇茜, 黄磊, 刘耀

Nd3+:GdScO3 crystal field energy level and fitting

Fan Ying, Zhang Qing-Li, Gao Jin-Yun, Gao Yu-Xi, Huang Lei, Liu Yao
PDF
HTML
导出引用
  • 采用提拉法生长出了钕掺杂钪酸钆晶体(Nd3+:GdScO3), 通过低温吸收光谱和室温发射光谱, 对其中Nd3+的实验能级进行分析指认, 确定了Nd3+:GdScO3的66个实验Stark能级, 拟合了其自由离子参数和晶体场参数, 拟合均方根误差为13.17 cm–1. 与Nd3+:YAP和Nd3+:YAG相比, Nd3+:GdScO3的晶场强度较弱. 弱的晶体场强度有可能是Nd3+:GdScO3晶体具有优良激光特性的原因之一. 本文数据集可在https://www.doi.org/10.57760/sciencedb.15702中访问获取.
    Gadolinium scandate (GdScO3) crystal has a perovskite structure, belonging to an orthogonal system, and its space group is Pnma (No. 62). Due to the disordered distributions of Sc3+ and Gd3+ ions, different cation sites can be replaced by doped ions, which indicates that GdScO3 crystal has a high tolerance for structural distortion. Compared with other oxide crystals, GdScO3 crystal has lower phonon energy of about 452 cm–1, which reduces non-radiative relaxation between adjacent energy levels and has strong thermal stability. In addition, GdScO3 crystal birefringence is large, and as a laser material, it can eliminate the adverse effects caused by thermal birefringence, such as thermal depolarization loss. As an active ion, Nd3+(4f3) is an ideal four-level system. Therefore, Nd3+:GdScO3 crystal has a broad application prospect as a laser crystal matrix material. However, the study of Nd3+:GdScO3 crystal field energy level fitting and crystal field parameters has not been reported to the authors’ knowledge. Neodymium-doped gadolinium scandiate (Nd3+:GdScO3) crystal is grown by the Czochralski method. The absorption spectrum in a range of 250—2650 nm is tested at a low temperature (8 K), and the emission spectrum at room temperature is also tested. The experimental energy levels of Nd3+ are analyzed and 66 experimental Stark levels of Nd3+:GdScO3 are identified. For the doped trivalent rare earth ion crystals, the energy level structure of rare earth ion is related to its luminescence characteristics, so it is necessary to study its energy level structure. In recent decades, parametric crystal field models have been widely applied to various rare-earth ion doped garnet crystals. The parametric model is used to analyze and fit the crystal field energy levels of Nd3+ doped orthogonal GdScO3. The fitted root mean square error is 13.17 cm–1. The resulting free ion parameters and crystal field parameters are calculated and analyzed, and the crystal field intensity is calculated. Fitting results show that the parameterized Stark levels are in good agreement with the experimental spectra, and the results are ideal. Comparing with Nd3+:YAP and Nd3+:YAG, the crystal field strength of Nd3+:GdScO3 is weak. The weak crystal field strength may be one of the reasons for the excellent laser properties of Nd3+:GdScO3 crystals. But its microscopic mechanism needs further studying. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.15702.
      通信作者: 张庆礼, zql@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3605700)、国家自然科学基金(批准号: 52272011, 11875248)、中国科学院青年创新促进会(批准号: 2023463)和安徽省实验室重点基金(批准号: AHL20220ZR04)资助的课题.
      Corresponding author: Zhang Qing-Li, zql@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3605700), the National Natural Science Foundation of China (Grant Nos. 52272011, 11875248), the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2023463), and the Anhui Provincial Laboratory Key Fund, China (Grant No. AHL20220ZR04).
    [1]

    Pan Z B, Cai H Q, Huang H, Yu H H, Zhang H J, Wang J Y 2014 J. Alloys Compd. 607 16Google Scholar

    [2]

    Pan Z B, Cong H J, Yu H H, Tian L, Yuan H, Cai H Q, Zhang H J, Huang H, Wang J Y, Wang Q, Wei Z Y, Zhang Z G 2013 Opt. Express 21 6091Google Scholar

    [3]

    Wang G J, Long X F, Zhang L Z, Lin Z B, Wang G F 2013 Opt. Mater. 35 2703Google Scholar

    [4]

    Uecker R, Wilke H, Schlom D G, Velickov B, Reiche P, Polity A, Bernhagen M, Rossberg M 2006 J. Cryst. Growth 295 84Google Scholar

    [5]

    Peng F, Liu W P, Luo J Q, Sun D L, Chen Y Z, Zhang H L, Ding S J, Zhang Q L 2018 CrystEngComm 20 6291Google Scholar

    [6]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [7]

    Wang D H, Hou W T, Li N, Xue Y Y, Wang Q G, Xu X D, Li D Z, Zhao H Y, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [8]

    Li Q, Dong J, Wang Q G, Xue Y Y, Tang H, Xu X D, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [9]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [10]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S, Kevorkov A M, Korolev D I, Potemkin A V, Femin V V 1983 J. Appl. Spectrosc. 38 343Google Scholar

    [11]

    Zhang Y H, Huang C, Xu M, Fang Q, Li S, Lin W, Deng G, Zhao C, Hang Y 2023 Opt. Laser Technol. 167 109709Google Scholar

    [12]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y Y, Wang Q G, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [13]

    Peng F, Liu W P, Zhang Q L, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X F 2018 J. Lumin. 201 176Google Scholar

    [14]

    Zhang Y H, Li S M, Du X, Guo J, Gong Q R, Tao S L, Zhang P X, Fang Q N, Pan S L, Zhao C C, Liang X Y, Hang Y 2021 Opt. Lett. 46 3641Google Scholar

    [15]

    Hu D H, Dong J S, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [16]

    Wang W D, Tian J, Li N, Liu J, Hu D H, Dong J S, Lin H, Wang Q G, Xue Y Y, Xu X D, Li D Z, Wang Z S, Xu J 2022 Opt. Mater. Express 12 468Google Scholar

    [17]

    高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 物理学报 63 220302Google Scholar

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 220302Google Scholar

    [18]

    Duan C K, Tanner P A, Makhov V N, Kirm M 2007 Phys. Rev. B 75 195130Google Scholar

    [19]

    Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420Google Scholar

    [20]

    高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐 2015 物理学报 64 220302Google Scholar

    Gao J Y, Zhang Q L, Wang X F, Liu W P, Sun G H, Sun D L, Yin S T 2015 Acta Phys. Sin. 64 220302Google Scholar

    [21]

    Burdick G W, Jayasankar C K, Richardson F S, Reid M F 1994 Phys. Rev. B 50 16309Google Scholar

    [22]

    da Gama A A S, de Sá G F, Porcher P, Caro P 1981 J. Chem. Phys. 75 2583Google Scholar

    [23]

    Guo R Q, Wang F Y, Wang S X, Wu K, Lu D Z, Liang F, Yu H H, Zhang H J 2023 Cryst. Growth Des. 23 3761Google Scholar

  • 图 1  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在250—500 nm波段的吸收光谱

    Fig. 1.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 250–500 nm at 8 K.

    图 2  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在500—700 nm波段的吸收光谱

    Fig. 2.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 500–700 nm at 8 K.

    图 3  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在700—1000 nm波段的吸收光谱

    Fig. 3.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 700–1000 nm at 8 K.

    图 4  8 K下Nd3+:GdScO3晶体(原子百分比为5%)在1000—2650 nm波段的吸收光谱

    Fig. 4.  Absorption spectra of Nd3+:GdScO3 crystal (atomic percentage is 5%) in a range of 1000–2650 nm at 8 K.

    图 5  室温下Nd3+:GdScO3晶体在850—1500 nm波段的发射光谱

    Fig. 5.  Emission spectra of Nd3+:GdScO3 crystals in the 850–1500 nm band at room temperature.

    表 1  Nd3+:GdScO3晶体(原子百分比为5%)中的能级

    Table 1.  Energy level of Nd3+:GdScO3 crystals (atomic percentage is 5%).

    2S+1L Nd3+:GdScO3的能级/cm–1
    4I9/2 0, 95, 156, 384.9, 600
    4I11/2 2081.9, 2193.7, 2376.8
    4I13/2 3888, 3980, 4024.8, 4137.5, 4182.4, 4253.2
    4I15/2 5798, 5917.6, 5975.9, 6108, 6154.6,
    6251.6, 6374, 6438.3
    4F3/2 11410.3
    2H9/2 + 4F5/2 12315.2, 12410, 12459.5, 12554.9,
    12578.6, 12634.2, 12706.5, 12771.4
    4F7/2 + 4S3/2 13234.5, 13326.2, 13422.8, 13462.6
    4F9/2 14547.6, 14641.3, 14723.2, 14814.8
    2H(2)11/2 15822.8, 15949
    4G5/2 + 2G7/2 16801.1, 16931, 17027, 17170.3, 17283.1,
    4G7/2 18789.9, 18946.6
    4G7/2 + 2K13/2 19245.6, 19394.9, 19561.8, 19723.9
    2D3/2 + 4G11/2 20929.3, 21079.3, 21186.4
    2G9/2 + 2K15/2 21395, 21607.6, 21805.5
    2P1/2 23041.5
    2D(1)5/2 23463.2
    2P3/2 25974
    4D3/2 + 4D5/2 + 2I11/2 27685.5, 28264.6, 28885
    2I13/2 + 2L15/2 + 4D7/2 30012, 30303, 31250, 31948.9
    2H(1)9/2 32531, 32916.4
    2D5/2 33783.8
    2F(2)5/2 37735.8
    2F(2)7/2 39308.2
    下载: 导出CSV

    表 2  Nd3+:GdScO3晶体场能级拟合计算

    Table 2.  Crystal-field energy levels fitting of Nd3+:GdScO3.

    2S+1LJ Nd3+:GdScO3的能级
    Ecalc Eexp ΔE/cm–1
    4I9/2 –6.16 0 6.16
    94.83 95 0.16
    171.56 156 –15.57
    373.37 384.9 11.52
    613.97 600 –13.97
    4I11/2 2083.40 2081.9 –1.5
    2178.01 2193.7 15.69
    2357.63 2376.8 19.17
    4I13/2 3920.90 3888.0 –32.9
    3982.08 3980.0 –2.08
    4028.62 4024.8 –3.83
    4141.91 4137.5 –4.42
    4183.76 4182.4 –1.36
    4274.03 4253.2 –20.83
    4I15/2 5782.82 5798.0 15.18
    5904.53 5917.6 13.06
    5975.49 5975.9 0.40
    6168.43 6154.6 –13.84
    6249.49 6251.6 2.10
    6350.18 6374.0 23.81
    4F3/2 11398.61 11410.3 11.69
    2H(2)9/2 + 4F5/2 12335.88 12315.2 –20.69
    12408.68 12410.0 1.31
    12471.35 12459.5 –11.86
    12543.56 12554.9 11.33
    12592.03 12578.6 –13.44
    12625.69 12634.2 8.51
    2H(2)9/2 12684.20 12706.5 22.29
    12766.74 12771.4 4.65
    4F7/2 13325.10 13326.2 1.10
    13432.37 13422.8 –9.58
    4S3/2 13462.96 13462.6 –0.37
    4F9/2 14650.75 14641.3 –9.45
    14717.67 14723.2 5.52
    14810.44 14814.8 4.35
    2H(2)11/2 15824.13 15822.8 –1.33
    15959.86 15949.0 –10.87
    4G5/2 16940.85 16931.0 –9.85
    17018.99 17027.0 8.00
    4G7/2 17275.08 17283.1 8.02
    18788.91 18789.9 0.99
    18941.16 18946.6 5.43
    2K13/2 19261.72 19245.6 –16.13
    19732.11 19723.9 –8.22
    4G9/2 19389.21 19394.9 5.69
    19549.45 19561.8 12.34
    2G(1)9/2 + 2D(1)3/2 20930.64 20929.3 –1.34
    2G(1)9/2 + 2K15/2 21059.54 21079.3 19.76
    21409.62 21395.0 –14.67
    4G11/2 21172.41 21186.4 13.99
    21613.10 21607.6 –5.51
    2K15/2 21409.62 21394.9 –14.67
    4G11/2 + 2K15/2 21817.38 21805.5 –11.89
    2P1/2 23040.12 23041.5 1.37
    2P3/2 25970.86 25974.0 3.14
    4D3/2 + 4D5/2 27683.17 27685.5 2.33
    4D5/2 28261.54 28264.6 3.05
    2I11/2 28882.52 28885.0 2.48
    2I13/2 30007.88 30012.0 4.11
    4D7/2 30308.17 30303.0 –5.17
    2L17/2 31241.68 31250.0 8.31
    31947.28 31948.9 3.02
    2H(1)9/2 32527.98 32531.0 4.89
    2D(2)3/2 32928.03 32916.4 –11.64
    2D(2)5/2 + 2H(1)11/2 33789.05 33783.8 –5.26
    2F(2)5/2 37739.95 37735.8 –4.15
    2F(2)7/2 39308.14 39308.2 0.05
    下载: 导出CSV

    表 3  Nd3+掺杂在不同基质中参数的对比

    Table 3.  Comparison of parameters of Nd3+ doping in different matrices.

    参数 Nd3+:GdScO3
    /cm–1
    Nd3+:YAG
    /cm–1
    Nd3+:YAP
    /cm–1
    $ {E_{{\text{avg}}}} $ 24041 24097 24119
    $ {F^2} $ 70382 70845 70925
    $ {F^4} $ 51265 51235 50794
    $ {F^6} $ 34639 34717 35424
    $ \xi $ 883 876 875
    $ \alpha $ 21.1 21.1 23
    $ \beta $ –645 –645 –691
    $ \gamma $ 1660 1660 1690
    $ {T^2} $ 482 345 458
    $ {T^3} $ 13 46 38.4
    $ {T^4} $ 87 61 75.8
    $ {T^6} $ –249 –272 –290
    $ {T^7} $ 560 318 237
    $ {T^8} $ 400 271 496
    $ M $ 1.62 1.62 1.9
    $ P $ 107 107 206
    $ B_0^2 $ –737 –405 –154
    $ B_2^2 $ 539+[0i] 179 578
    $ B_0^4 $ –789 –2823 –541
    $ B_2^4 $ 1058 +30i 540 967+24i
    $ B_4^4 $ –9+788i 1239 –309+608i
    $ B_0^6 $ –550 955 –671
    $ B_2^6 $ 695–22i –390 512–18i
    $ B_4^6 $ 1262+[0i] 1610 1611+[0i]
    $ B_6^6 $ 49+174i –281 0+132i
    $ \sigma $ 13.17 31.1 15.6
    Nv 2709 4215 3406
    下载: 导出CSV
  • [1]

    Pan Z B, Cai H Q, Huang H, Yu H H, Zhang H J, Wang J Y 2014 J. Alloys Compd. 607 16Google Scholar

    [2]

    Pan Z B, Cong H J, Yu H H, Tian L, Yuan H, Cai H Q, Zhang H J, Huang H, Wang J Y, Wang Q, Wei Z Y, Zhang Z G 2013 Opt. Express 21 6091Google Scholar

    [3]

    Wang G J, Long X F, Zhang L Z, Lin Z B, Wang G F 2013 Opt. Mater. 35 2703Google Scholar

    [4]

    Uecker R, Wilke H, Schlom D G, Velickov B, Reiche P, Polity A, Bernhagen M, Rossberg M 2006 J. Cryst. Growth 295 84Google Scholar

    [5]

    Peng F, Liu W P, Luo J Q, Sun D L, Chen Y Z, Zhang H L, Ding S J, Zhang Q L 2018 CrystEngComm 20 6291Google Scholar

    [6]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [7]

    Wang D H, Hou W T, Li N, Xue Y Y, Wang Q G, Xu X D, Li D Z, Zhao H Y, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [8]

    Li Q, Dong J, Wang Q G, Xue Y Y, Tang H, Xu X D, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [9]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [10]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S, Kevorkov A M, Korolev D I, Potemkin A V, Femin V V 1983 J. Appl. Spectrosc. 38 343Google Scholar

    [11]

    Zhang Y H, Huang C, Xu M, Fang Q, Li S, Lin W, Deng G, Zhao C, Hang Y 2023 Opt. Laser Technol. 167 109709Google Scholar

    [12]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y Y, Wang Q G, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [13]

    Peng F, Liu W P, Zhang Q L, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X F 2018 J. Lumin. 201 176Google Scholar

    [14]

    Zhang Y H, Li S M, Du X, Guo J, Gong Q R, Tao S L, Zhang P X, Fang Q N, Pan S L, Zhao C C, Liang X Y, Hang Y 2021 Opt. Lett. 46 3641Google Scholar

    [15]

    Hu D H, Dong J S, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [16]

    Wang W D, Tian J, Li N, Liu J, Hu D H, Dong J S, Lin H, Wang Q G, Xue Y Y, Xu X D, Li D Z, Wang Z S, Xu J 2022 Opt. Mater. Express 12 468Google Scholar

    [17]

    高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 物理学报 63 220302Google Scholar

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 220302Google Scholar

    [18]

    Duan C K, Tanner P A, Makhov V N, Kirm M 2007 Phys. Rev. B 75 195130Google Scholar

    [19]

    Gao J Y, Zhang Q L, Sun D L, Luo J Q, Liu W P, Yin S T 2012 Opt. Commun. 285 4420Google Scholar

    [20]

    高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐 2015 物理学报 64 220302Google Scholar

    Gao J Y, Zhang Q L, Wang X F, Liu W P, Sun G H, Sun D L, Yin S T 2015 Acta Phys. Sin. 64 220302Google Scholar

    [21]

    Burdick G W, Jayasankar C K, Richardson F S, Reid M F 1994 Phys. Rev. B 50 16309Google Scholar

    [22]

    da Gama A A S, de Sá G F, Porcher P, Caro P 1981 J. Chem. Phys. 75 2583Google Scholar

    [23]

    Guo R Q, Wang F Y, Wang S X, Wu K, Lu D Z, Liang F, Yu H H, Zhang H J 2023 Cryst. Growth Des. 23 3761Google Scholar

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能. 物理学报, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [3] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [4] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [5] 高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐. Nd3+掺杂GdTaO4的吸收光谱分析和晶场计算. 物理学报, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [6] 高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐. 高浓度Er3+掺杂Y3Sc2Ga3O12晶体的吸收光谱与晶体场模型研究. 物理学报, 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [7] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性. 物理学报, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] 高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐. 从头计算法计算Yb3+掺杂钽酸盐的晶体场参数和能级结构. 物理学报, 2013, 62(1): 013102. doi: 10.7498/aps.62.013102
    [9] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [10] 邓柳咏, 胡义华, 王银海, 吴浩怡, 谢伟. Dy3+/Nd3+掺杂对Sr4Al14O25:Eu2+陷阱能级的影响. 物理学报, 2010, 59(5): 3402-3407. doi: 10.7498/aps.59.3402
    [11] 肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新. Nd3+:Gd3Sc2Al3O12 晶场能级及拟合. 物理学报, 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [12] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [13] 韩 琳, 宋 峰, 万从尚, 邹昌光, 闫立华, 张 康, 田建国. 自受激拉曼晶体Nd3+:SrMoO4的光谱性质研究. 物理学报, 2007, 56(3): 1751-1757. doi: 10.7498/aps.56.1751
    [14] 殷春浩, 焦 杨, 宋 宁, 茹瑞鹏, 杨 柳, 张 雷. 掺入Mg2+对CsNiCl3晶体的基态能级、零场分裂参量及Jahn-Teller效应的影响. 物理学报, 2006, 55(10): 5471-5478. doi: 10.7498/aps.55.5471
    [15] 谢双媛, 羊亚平, 林志新, 吴 翔. 驱动场作用下光子晶体中三能级原子的自发发射. 物理学报, 1999, 48(8): 1459-1469. doi: 10.7498/aps.48.1459
    [16] 郭常新, 崔宏滨, 李碧琳. 低温高压下的Na5Eu(WO4)4的发光和晶体场参数. 物理学报, 1996, 45(8): 1409-1417. doi: 10.7498/aps.45.1409
    [17] 郭常新, 李碧琳. 基质发光晶体Na5Eu(MoO4)4在高压下的光谱与晶体场参数. 物理学报, 1993, 42(1): 101-105. doi: 10.7498/aps.42.101
    [18] 徐益荪, 马东平, 宋增福, 李大芬, 顾英俊. YAlO3:Nd3+的子能级R1和R2的热移位. 物理学报, 1986, 35(2): 213-219. doi: 10.7498/aps.35.213
    [19] 华道宏, 姜洁, 李大芬, 马东平, 徐益荪, 宋增福. LaF3:Nd3+的斯塔克子能级能量值的计算. 物理学报, 1986, 35(11): 1465-1472. doi: 10.7498/aps.35.1465
    [20] 宋增福, 张合义, 徐尧洲, 罗正纪, 江宏忠, 郗德发, 汪太辅, 梁民基. 无水NdCl3和无水PrCl3单晶体中Nd3+的吸收光谱及其量子态. 物理学报, 1980, 29(5): 602-608. doi: 10.7498/aps.29.602
计量
  • 文章访问数:  2452
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-10-08
  • 上网日期:  2023-11-24
  • 刊出日期:  2024-02-20

/

返回文章
返回