搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质

袁文翎 姚碧霞 李喜 胡顺波 任伟

引用本文:
Citation:

第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质

袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟

First principles study on structural stability, mechanical, and thermodynamic properties of γ'-Co3(V, M) (M = Ti, Ta) phase

Yuan Wen-Ling, Yao Bi-Xia, Li Xi, Hu Shun-Bo, Ren Wei
PDF
HTML
导出引用
  • 本文采用基于密度泛函理论的第一性原理计算方法并结合准谐德拜模型, 对Co基高温合金中γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、热力学性质以及有限温度下的力学性质进行了系统的研究和讨论. 结果表明, γ'-Co3(V, M)相能以L12结构稳定存在, 其具有良好的抵抗变形的能力. γ'-Co3(V, Ti)相的热力学性能对温度的敏感性要大于γ'-Co3(V, Ta)相, 且γ'-Co3(V, M)相具有高温稳定性. 在有限温度下, 随着温度的升高, γ'-Co3(V, M)相由塑性材料向脆性材料过渡转变, 而且, 除了硬度性能有所提升外, γ'-Co3(V, M) (M = Ti, Ta)相的力学性能均呈下降趋势.
    This research focuses on enhancing Co-based high-temperature alloys by using γ' precipitate phases to address the structural metastability of γ'-Co3(Al, W). By adding Ti and Ta, the γ'-Co3(V, Ti) and γ'-Co3(V, Ta) of Co-V alloys are stabilized, surpassing the performance of traditional Co-Al-W alloys. Utilizing a 2×2×2 supercell model and density functional theory (DFT), we investigate these alloys' phase stabilities and mechanical, thermodynamic, and electronic properties. Our findings show that γ'-Co3(V, Ti) phase and γ'-Co3(V, Ta) phases are stable at 0 K, evidenced by negative formation enthalpies and stable phonon spectra. Mechanical analysis confirms their stabilities through elastic constants and detailed evaluations of properties such as bulk modulus, shear modulus, and Young’s modulus, revealing excellent resistance to deformation and ductility. The electronic structure analysis further distinguishes γ'-Co3(V, Ta) for superior electronic stability, which is attributed to its lower state density and deviation from “pseudogap” peaks. Thermodynamically, the quasi-harmonic Debye model highlights the γ'-Co3(V, Ti) phase’s temperature-sensitive thermal expansion coefficient, while γ'-Co3(V, Ta) maintains higher stability at elevated temperatures. As temperature rises, both phases show decreased resistance to deformation, though they maintain comparable heat resistance due to low-temperature dependency. These results suggest that Co-V-Ti alloy and Co-V-Ta alloy can maintain their γ' phase stability at higher temperatures, enhancing Co-based high-temperature alloys’ performances and phase stabilities. This progress is crucial for developing new Co-based superalloys, and is of great significance for their applications and performance optimization.
      通信作者: 任伟, renwei@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074241, 11929401, 52120204, 12311530675)、上海市科学技术委员会项目(批准号: 22XD1400900, 20501130600, 21JC1402700, 21JC1402600)、之江实验室重点研究项目(批准号: 2021PE0AC02)和上海大学上海市科学与工程计算专业技术服务平台资助的课题.
      Corresponding author: Ren Wei, renwei@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074241, 11929401, 52120204, 12311530675), the Committee of Science and Technology of Shanghai, China (Grant Nos. 22XD1400900, 20501130600, 21JC1402700, 21JC1402600), the Key Research Projects of Zhijiang Laboratory, China (Grant No. 2021PE0AC02), and the Shanghai Technical Service Center of Science and Engineering Computing, Shanghai University, China.
    [1]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press

    [2]

    Liu S, Liu C, Ge L, Zhang X, Yu T, Yan P, Wang C Y 2017 Scr. Mater 138 100Google Scholar

    [3]

    Schafrik R E, Sprague R 2004 Adv. Mater. Process. 162 41

    [4]

    Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar

    [5]

    Pan Y, Zhang X 2023 J. Mater. Res. Technol. 24 1792Google Scholar

    [6]

    Pan Y, Wen M 2018 Vacuum 156 419Google Scholar

    [7]

    Pan Y, Pu D L, Li Y Q, Zheng Q H 2020 Mater. Sci. Eng. B 259 114580Google Scholar

    [8]

    Pan Y, Jin C 2017 Vacuum 143 165Google Scholar

    [9]

    Pan Y 2023 J. Mater. Res. Technol. 26 8813Google Scholar

    [10]

    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K 2006 Science 312 90Google Scholar

    [11]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [12]

    Ooshima M, Tanaka K, Okamoto N L, Kishida K, Inui H 2010 J. Alloys Compd. 508 71Google Scholar

    [13]

    Kobayashi S, Tsukamoto Y, Takasugi T 2011 Intermetallics 19 1908Google Scholar

    [14]

    Xue F, Zhou H J, Ding X F, Wang M L, Feng Q 2013 Mater. Lett. 112 215Google Scholar

    [15]

    Yan H Y, Vorontsov V A, Dye D 2014 Intermetallics 48 44Google Scholar

    [16]

    Liu J, Yu J J, Yang Y H, Zhou Y Z, Sun X F 2019 Mater. Sci. Eng. A 745 404Google Scholar

    [17]

    Volz N, Xue F, Zenk C H, Bezold A, Gabel S, Subramanyam A P A, Drautz R, Hammerschmidt T, Makineni S K, Gault B, Göken M, Neumeier S 2021 Acta Mater. 214 117019Google Scholar

    [18]

    Volz N, Xue F, Bezold A, Zenk C H, Fries S G, Schreuer J, Neumeier S, Göken M 2021 Metall. Mater. Trans. A 52 3931Google Scholar

    [19]

    Guo J, Xiao B, Li Y, Zhai D, Tang Y, Du W, Liu Y 2021 Comput. Mater. Sci. 200 110787Google Scholar

    [20]

    Makineni S K, Nithin B, Chattopadhyay K 2015 Acta Mater. 85 85Google Scholar

    [21]

    Makineni S K, Nithin B, Chattopadhyay K 2015 Scr. Mater. 98 36Google Scholar

    [22]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloys Compd. 664 141Google Scholar

    [23]

    Bocchini P J, Sudbrack C K, Noebe R D, Dunand D C, Seidman D N 2017 Mater. Sci. Eng. A 705 122Google Scholar

    [24]

    Yao Q, Zhu Y, Wang Y 2011 Physica B 406 1542Google Scholar

    [25]

    Jiang C 2008 Scr. Mater. 59 1075Google Scholar

    [26]

    Liu X, Wang Y, Xu W-W, Han J, Wang C 2020 J. Alloys Compd. 820 153179Google Scholar

    [27]

    Wang Z, Zhang J, Zhang Y, Jin H, Zhang W 2020 J. Phys. Soc. Jpn. 89 124714Google Scholar

    [28]

    Tang Y, Xiao B, Chen J, Liu F, Du W, Guo J, Liu Y, Liu Y 2022 Metall. Mater. Trans. A 54 450Google Scholar

    [29]

    Xi S, Chen L, Bao L, Han J, Yu J, Li Z, Xu W, Bin D, Wang C, Liu X 2022 Mater. Today Commun. 30 102931Google Scholar

    [30]

    Guo J, Xiao B, Tang Y, Li Y, Zhai D, Fan X, Liu Y 2024 Comput. Mater. Sci. 233 112767Google Scholar

    [31]

    van de Walle A, Asta M, Ceder G 2002 Calphad 26 539Google Scholar

    [32]

    Wang J, Yip S, Phillpot S R, Wolf D 1993 Phys. Rev. Lett. 71 4182Google Scholar

    [33]

    Shang S, Wang Y, Liu Z-k 2007 Appl. Phys. Lett. 90 101909Google Scholar

    [34]

    Wang S Q, Ye H Q 2003 J. Phys.: Condens. Matter 15 5307Google Scholar

    [35]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

    [36]

    Simmons G, Wang H F 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge: M.I.T. Press

    [37]

    Chen X-Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [38]

    Yan S, Wang Y, Tao F, Ren J 2022 J. Phys. Chem. A 126 8771Google Scholar

    [39]

    Kim D, Shang S, Liu Z K 2012 Acta Mater. 60 1846Google Scholar

    [40]

    Moruzzi V L, Janak J F, Schwarz K 1988 Phys. Rev. B 37 790Google Scholar

    [41]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [42]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [43]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [47]

    Togo A 2023 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [48]

    Xu W W, Han J J, Wang Y, Wang C P, Liu X J, Liu Z K 2013 Acta Mater. 61 5437Google Scholar

    [49]

    Rao P V M, Murthy K S, Suryanarayana S V, Naidu S V N 1992 Phys. Status Solidi A 133 231Google Scholar

    [50]

    Rzyman K, Moser Z, Watson R E, Weinert M 1996 J. Phase Equilib. 17 173Google Scholar

    [51]

    Born M 1939 J. Chem. Phys. 7 591Google Scholar

    [52]

    Ali H, Chen R, Wu B, Xie T L, Weng L J, Wen J S, Yao Q P, Su L J, Zhao Y, Zhao P H, Sa B S, Liu Y, Wang C X, Su H, Hayat A 2022 Arab. J. Chem. 15 104278Google Scholar

    [53]

    Stassis C, Loong C K, Theisen C, Nicklow R M 1982 Phys. Rev. B 26 4106Google Scholar

    [54]

    Kayser F X, Stassis C 1981 Phys. Status Solidi A 64 335Google Scholar

    [55]

    Tanaka K, Ohashi T, Kishida K, Inui H 2007 Appl. Phys. Lett. 91 181907Google Scholar

    [56]

    Wang V, Xu N, Liu J C, Tang G, Geng W 2019 Comput. Phys. Commun. 267 108033Google Scholar

    [57]

    Raheem Z 2019 Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials

    [58]

    Pugh S F 1954 Philos. Mag. Ser. 45 823Google Scholar

    [59]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [60]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2014 Comput. Mater. Sci. 83 27Google Scholar

    [61]

    Eberhart M E 1996 Acta Materialia 44 2495Google Scholar

    [62]

    Jones H 1957 Acta Crystallogr. 10 390Google Scholar

    [63]

    Wang Y, Wang J J, Zhang H, Manga V R, Shang S, Chen L Q, Liu Z K 2010 J. Phys.: Condens. Matter 22 225404Google Scholar

  • 图 1  (a) L12 结构原胞示意图; (b) γ'-Co3(V, M) (M = Ti, Ta)的2×2×2特殊准随机结构超胞

    Fig. 1.  (a) Schematic diagram of L12 structure protocell; (b) γ'-Co3(V, M) (M = Ti, Ta) with a special 2×2×2 quasi-random structure.

    图 2  沿布里渊区高对称点连接方向计算得到的声子色散曲线 (a) γ'-Ni3Al; (b) γ'-Co3(Al, W); (c) γ'-Co3(V, Ti); (d) γ'-Co3(V, Ta), 横轴上单位为2π/a的高对称点分别为Γ = (0, 0, 0), X = (0, 0.5, 0), M = (0.5, 0.5, 0), R = (0.5, 0.5, 0.5)

    Fig. 2.  Phonon dispersion curve calculated along the connection direction of high symmetry points in the Brillouin zone: (a) γ'-Ni3Al; (b) γ'-Co3(Al, W); (c) γ'-Co3(V, Ti); (d) γ'-Co3(V, Ta). On the horizontal axis (unit of 2π/a) the high symmetry points are: Γ = (0, 0, 0), X = (0, 0.5, 0), M = (0.5, 0.5, 0), R = (0.5, 0.5, 0.5).

    图 3  γ'-Co3(V, M) (M = Ti, Ta)相的总态密度(TDOS)和投影到各金属元素的分态密度图

    Fig. 3.  Total state density (TDOS) of γ'-Co3(V, M) (M = Ti, Ta) phases and fractal density maps projected onto each metal element.

    图 4  γ'-Co3(V, M) (M = Ti, Ta)相 (a) 热膨胀系数, (b) 等压热容CV和等容热容CP, (c) 焓H, (d) 熵S与温度的关系曲线

    Fig. 4.  Relation curves of (a) coefficient of thermal expansion, (b) constant pressure heat capacity and constant volume heat capacity, (c) enthalpy, (d) entropy with temperature of γ'-Co3(V, M) (M = Ti, Ta) phases.

    图 5  γ'-Co3(V, M) (M = Ti, Ta)相的弹性常数随温度的变化趋势

    Fig. 5.  The elastic constants of γ'-Co3(V, M) (M = Ti, Ta) phases change with temperature.

    图 6  γ'-Co3(V, M) (M = Ti, Ta)相的体积模量B、剪切模量G、杨氏模量EB/G值、柯西压力C12C44、泊松比υ、维氏硬度HV以及德拜温度ΘD在有限温度下的变化趋势

    Fig. 6.  Change trend of volume modulus B, shear modulus G, Young's modulus E, B/G value, Poisson's ratio υ, Vickers hardness HV and Debye temperature ΘD of γ'-Co3(V, M) (M = Ti, Ta) phases at finite temperature.

    表 1  γ'-Co3(V, M) (M = Ti, Ta)相的平衡晶格常数a、体积V、密度ρ和形成焓ΔHf

    Table 1.  Equilibrium lattice constant a, volume V, density ρ and formation enthalpy $ \Delta {H}_{{\mathrm{f}}} $ of γ'-Co3(V, M) (M = Ti, Ta) phase alloy.

    Materials Ni3Al Co3(Al, W) Co3(V, Ti) Co3(V, Ta)
    Cal. a) Cal. b) Exp. c) d) Cal a) Cal. b) Exp. e) Cal. a) Cal. a)
    a 3.566 3.568 3.572 3.563 3.566 3.599 3.537 3.577
    V3 45.361 45.423 45.576 45.216 45.347 46.617 44.249 45.761
    ρ/(g·cm–3) 7.433 7.427 7.405 10.364 10.334 10.056 8.489 10.623
    $ \Delta {H}_{{\mathrm{f}}}/ $(kJ·mol–1) –41.399 –42.613 –41.3 d) –13.194 –14.958 –21.678 –20.568
    注: a) This work; b) Ref. [48], GGA-PAW; c) Ref.[49], experiment; d) Ref. [50], experiment; e) Ref.[10], experiment.
    下载: 导出CSV

    表 2  γ'-Co3(V, M) (M = Ti, Ta)相的弹性常数Cij、体积模量B、剪切模量G、杨氏模量EB/G值、泊松比υ、柯西压力C12C44、维氏硬度HV以及德拜温度ΘD

    Table 2.  Elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, B/G value, Poisson’s ratio υ, Cauchy pressure C12 – C44, Vickers hardness HV and Debye temperature ΘD of γ'-Co3(V, M) (M = Ti, Ta) phases.

    Materials Ni3Al Co3(Al, W) Co3(V, Ti) Co3(V, Ta)
    Cal.a) Cal.b) Exp.c)d) Cal a) Cal.e) Exp.f) Cal.a) Cal.a)
    C11 /GPa 232 238.85 223 334 304 271 344 369
    C12 /GPa 153 146.07 148 189 181 172 178 176
    C44/GPa 125 126.61 125 182 177 162 174 173
    B/GPa 179 176.98 173 237 222 205 233 240
    G/GPa 79 84.68 77 126 116 101 130 137
    E/GPa 206 219.10 201 320 296 260 327 345
    B/G 2.267 2.090 2.250 1.886 1.92 2.03 1.802 1.754
    υ 0.308 0.290 0.310 0.275 0.278 0.290 0.266 0.260
    C12–C44 /GPa 28 19.46 23 8 4 10 4 3
    HV/GPa 6.83 11.65 12.99 14.153 15.3
    ΘD/K 482.7 470d 514.6 580.4 527.4
    注: a) This work; b) Ref.[52], GGA-PBE; c) Ref. [53], experiment; d) Ref. [54], experiment; e) Ref. [26], GGA-PBE; f) Ref.[55], experiment.
    下载: 导出CSV

    表 3  0—1500 K不同温度下γ'-Co3(V, M) (M = Ti, Ta)相的独立等温弹性常数$ C_{ij}^{{T}} $和多晶模量, 例如弹性模量B (GPa)、剪切模量G (GPa)、杨氏模量E (GPa)、B/G值和泊松比υ、以及维氏硬度HV (GPa)、德拜温度Θ (K)

    Table 3.  Independent isothermal elastic constant $ C_{ij}^{{T}} $ and polycrystalline modulus such as elastic modulus B (GPa), shear modulus G (GPa), Young’s modulus E (GPa), B/G value and Poisson’s ratio υ of γ'-Co3(V, M) (M = Ti, Ta) phases at different temperatures from 0—1500 K, And Vickers hardness HV (GPa), Debye temperature Θ (K).

    Materials T C11 C12 C44 B G E B/G υ HV Θ
    Co3(V, Ti) 0 332 171 169 225 125 317 1.80 0.265 13.88 571.5
    300 325 167 166 220 123 311 1.78 0.264 13.87 567.2
    600 312 159 161 210 120 302 1.75 0.260 13.91 559.8
    900 299 149 155 199 116 291 1.72 0.256 13.98 551.6
    1200 284 139 150 188 112 280 1.68 0.251 14.13 542.9
    1500 270 129 144 176 108 269 1.64 0.246 14.26 533.5
    Co3(V, Ta) 0 364 176 174 239 136 342 1.76 0.261 15.10 525.0
    300 355 171 171 232 133 336 1.74 0.259 15.17 521.0
    600 342 162 166 222 130 326 1.71 0.256 15.20 514.2
    900 328 153 160 212 126 315 1.68 0.252 15.24 506.8
    1200 315 145 155 202 122 304 1.66 0.249 15.24 499.5
    1500 301 136 149 191 118 293 1.63 0.245 15.27 491.6
    下载: 导出CSV
  • [1]

    Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press

    [2]

    Liu S, Liu C, Ge L, Zhang X, Yu T, Yan P, Wang C Y 2017 Scr. Mater 138 100Google Scholar

    [3]

    Schafrik R E, Sprague R 2004 Adv. Mater. Process. 162 41

    [4]

    Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar

    [5]

    Pan Y, Zhang X 2023 J. Mater. Res. Technol. 24 1792Google Scholar

    [6]

    Pan Y, Wen M 2018 Vacuum 156 419Google Scholar

    [7]

    Pan Y, Pu D L, Li Y Q, Zheng Q H 2020 Mater. Sci. Eng. B 259 114580Google Scholar

    [8]

    Pan Y, Jin C 2017 Vacuum 143 165Google Scholar

    [9]

    Pan Y 2023 J. Mater. Res. Technol. 26 8813Google Scholar

    [10]

    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K 2006 Science 312 90Google Scholar

    [11]

    Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S 2009 Intermetallics 17 1085Google Scholar

    [12]

    Ooshima M, Tanaka K, Okamoto N L, Kishida K, Inui H 2010 J. Alloys Compd. 508 71Google Scholar

    [13]

    Kobayashi S, Tsukamoto Y, Takasugi T 2011 Intermetallics 19 1908Google Scholar

    [14]

    Xue F, Zhou H J, Ding X F, Wang M L, Feng Q 2013 Mater. Lett. 112 215Google Scholar

    [15]

    Yan H Y, Vorontsov V A, Dye D 2014 Intermetallics 48 44Google Scholar

    [16]

    Liu J, Yu J J, Yang Y H, Zhou Y Z, Sun X F 2019 Mater. Sci. Eng. A 745 404Google Scholar

    [17]

    Volz N, Xue F, Zenk C H, Bezold A, Gabel S, Subramanyam A P A, Drautz R, Hammerschmidt T, Makineni S K, Gault B, Göken M, Neumeier S 2021 Acta Mater. 214 117019Google Scholar

    [18]

    Volz N, Xue F, Bezold A, Zenk C H, Fries S G, Schreuer J, Neumeier S, Göken M 2021 Metall. Mater. Trans. A 52 3931Google Scholar

    [19]

    Guo J, Xiao B, Li Y, Zhai D, Tang Y, Du W, Liu Y 2021 Comput. Mater. Sci. 200 110787Google Scholar

    [20]

    Makineni S K, Nithin B, Chattopadhyay K 2015 Acta Mater. 85 85Google Scholar

    [21]

    Makineni S K, Nithin B, Chattopadhyay K 2015 Scr. Mater. 98 36Google Scholar

    [22]

    Ruan J J, Wang C P, Yang S Y, Omori T, Yang T, Kimura Y, Liu X J, Kainuma R, Ishida K 2016 J. Alloys Compd. 664 141Google Scholar

    [23]

    Bocchini P J, Sudbrack C K, Noebe R D, Dunand D C, Seidman D N 2017 Mater. Sci. Eng. A 705 122Google Scholar

    [24]

    Yao Q, Zhu Y, Wang Y 2011 Physica B 406 1542Google Scholar

    [25]

    Jiang C 2008 Scr. Mater. 59 1075Google Scholar

    [26]

    Liu X, Wang Y, Xu W-W, Han J, Wang C 2020 J. Alloys Compd. 820 153179Google Scholar

    [27]

    Wang Z, Zhang J, Zhang Y, Jin H, Zhang W 2020 J. Phys. Soc. Jpn. 89 124714Google Scholar

    [28]

    Tang Y, Xiao B, Chen J, Liu F, Du W, Guo J, Liu Y, Liu Y 2022 Metall. Mater. Trans. A 54 450Google Scholar

    [29]

    Xi S, Chen L, Bao L, Han J, Yu J, Li Z, Xu W, Bin D, Wang C, Liu X 2022 Mater. Today Commun. 30 102931Google Scholar

    [30]

    Guo J, Xiao B, Tang Y, Li Y, Zhai D, Fan X, Liu Y 2024 Comput. Mater. Sci. 233 112767Google Scholar

    [31]

    van de Walle A, Asta M, Ceder G 2002 Calphad 26 539Google Scholar

    [32]

    Wang J, Yip S, Phillpot S R, Wolf D 1993 Phys. Rev. Lett. 71 4182Google Scholar

    [33]

    Shang S, Wang Y, Liu Z-k 2007 Appl. Phys. Lett. 90 101909Google Scholar

    [34]

    Wang S Q, Ye H Q 2003 J. Phys.: Condens. Matter 15 5307Google Scholar

    [35]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

    [36]

    Simmons G, Wang H F 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Cambridge: M.I.T. Press

    [37]

    Chen X-Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275Google Scholar

    [38]

    Yan S, Wang Y, Tao F, Ren J 2022 J. Phys. Chem. A 126 8771Google Scholar

    [39]

    Kim D, Shang S, Liu Z K 2012 Acta Mater. 60 1846Google Scholar

    [40]

    Moruzzi V L, Janak J F, Schwarz K 1988 Phys. Rev. B 37 790Google Scholar

    [41]

    Hill R 1952 Proc. Phys. Soc. A 65 349Google Scholar

    [42]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [43]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [47]

    Togo A 2023 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [48]

    Xu W W, Han J J, Wang Y, Wang C P, Liu X J, Liu Z K 2013 Acta Mater. 61 5437Google Scholar

    [49]

    Rao P V M, Murthy K S, Suryanarayana S V, Naidu S V N 1992 Phys. Status Solidi A 133 231Google Scholar

    [50]

    Rzyman K, Moser Z, Watson R E, Weinert M 1996 J. Phase Equilib. 17 173Google Scholar

    [51]

    Born M 1939 J. Chem. Phys. 7 591Google Scholar

    [52]

    Ali H, Chen R, Wu B, Xie T L, Weng L J, Wen J S, Yao Q P, Su L J, Zhao Y, Zhao P H, Sa B S, Liu Y, Wang C X, Su H, Hayat A 2022 Arab. J. Chem. 15 104278Google Scholar

    [53]

    Stassis C, Loong C K, Theisen C, Nicklow R M 1982 Phys. Rev. B 26 4106Google Scholar

    [54]

    Kayser F X, Stassis C 1981 Phys. Status Solidi A 64 335Google Scholar

    [55]

    Tanaka K, Ohashi T, Kishida K, Inui H 2007 Appl. Phys. Lett. 91 181907Google Scholar

    [56]

    Wang V, Xu N, Liu J C, Tang G, Geng W 2019 Comput. Phys. Commun. 267 108033Google Scholar

    [57]

    Raheem Z 2019 Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials

    [58]

    Pugh S F 1954 Philos. Mag. Ser. 45 823Google Scholar

    [59]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [60]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2014 Comput. Mater. Sci. 83 27Google Scholar

    [61]

    Eberhart M E 1996 Acta Materialia 44 2495Google Scholar

    [62]

    Jones H 1957 Acta Crystallogr. 10 390Google Scholar

    [63]

    Wang Y, Wang J J, Zhang H, Manga V R, Shang S, Chen L Q, Liu Z K 2010 J. Phys.: Condens. Matter 22 225404Google Scholar

  • [1] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [2] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [3] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] 刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云. 钙钛矿APbI3结构稳定性及光电性质的理论研究. 物理学报, 2017, 66(5): 057103. doi: 10.7498/aps.66.057103
    [5] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [6] 李鹤龄, 王娟娟, 杨斌, 王亚妮, 沈宏君. 广义不确定性原理下费米气体低温热力学性质. 物理学报, 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [7] 濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟. NbSi2奇异高压相及其热力学性质的第一性原理研究. 物理学报, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [8] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [9] 骆最芬, 陈星源, 林诗源, 赵宇军. BiXO3 (X= Cr, Mn, Fe, Ni)结构稳定性的第一性原理研究. 物理学报, 2013, 62(5): 053102. doi: 10.7498/aps.62.053102
    [10] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [11] 赵玉娜, 高涛, 吕金钟, 马俊刚. Li-N-H储氢体系热力学性质的第一性原理研究. 物理学报, 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [12] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [13] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [14] 张炜, 陈文周, 王俊斐, 张小东, 姜振益. MnPd合金相变, 弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [15] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [16] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [17] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [18] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [19] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  2598
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 修回日期:  2024-01-23
  • 上网日期:  2024-02-26
  • 刊出日期:  2024-04-20

/

返回文章
返回