搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单向测量超声背散射系数的晶粒尺寸评价高效方法

刘雨 田强 王新艳 关雪飞

引用本文:
Citation:

基于单向测量超声背散射系数的晶粒尺寸评价高效方法

刘雨, 田强, 王新艳, 关雪飞

Efficient grain size evaluation based on single direction measurement of ultrasonic backscattering coefficient

Liu Yu, Tian Qiang, Wang Xin-Yan, Guan Xue-Fei
PDF
HTML
导出引用
  • 镍基高温合金GH4742具有优异的机械性能, 而晶粒尺寸是影响其性能的关键因素. 基于物理模型的超声背散射法可以实现晶粒尺寸高效和准确的评价, 但受限于复杂模型或多角度声束测量. 因此, 本文提出了一种只需单向测量的背散射系数法, 且无需考虑测量系统等无关因素的影响. 基于独立散射模型, 推导了只与材料相关的背散射系数; 利用空间相关函数描述了晶粒尺寸与背散射系数的关系; 采用参考信号剔除干扰因素的影响, 实现实验背散射系数的快速提取. 制备三组不同晶粒尺寸的GH4742试块进行相控阵超声实验和平均晶粒尺寸评价, 并与金相法结果进行对比. 结果表明本文方法得到的晶粒度与金相法结果最大相对误差为–22.7%, 最小相对误差为–3.7%.
    GH4742 nickel-based superalloy exhibits excellent mechanical properties, and grain size is a key factor affecting its performance. A physical model-based ultrasonic backscattering method makes grain size measurement accurate and efficient. Nevertheless, it is constrained by complex models or multiple measurements taken from various beam angles. As a result, a backscattering coefficient method that requires only a single measurement for grain size evaluation is proposed. In contrast to the existing methods, the proposed method solely focuses on the backscattering coefficient component of the backscattering signal. It effectively eliminates the influence of unrelated factors, such as the measurement system and the acoustic field, through the utilization of reference signals.The independent scattering model is employed to derive the backscattering coefficient, which solely pertains to the material itself. The relationship between grain size and backscattering coefficient is described by using a spatial correlation function. To consider the irrelevant factors, an experimental measurement method is developed by using the reference signals. Through numerical calculation and analysis, it has been observed that the backscattering coefficient is closely related to the frequency. When the product of the wavenumber and the grain size is significantly greater than 1 ($ ka\gg 1 $), a Stochastic scattering limit is reached. Conversely, when $ ka\ll 1 $, a Rayleigh scattering limit is observed. Furthermore, the backscattering coefficient is directly proportional to the grain size. As a general trend, larger grain sizes result in higher backscattering coefficient.Three sets of GH4742 specimens with different grain sizes are prepared for phased array ultrasound experiments. It can be observed that the experimental backscattering coefficients, root mean square (RMS) values, and the amplitude trend of time domain signal are consistent. To perform grain size inversion, the backscattering coefficients in the effective bandwidth range of the probe are selected. By utilizing the least-square method, the theoretical backscattering coefficient is employed to fit the curves of the experimental backscattering coefficients. The evaluation results are compared with those obtained by metallographic analysis. The results show that the grain sizes obtained by the proposed method have a maximum relative error of –22.7% and a minimum relative error of –3.7%.
      通信作者: 关雪飞, xfguan@gscaep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51975546, U2230204)资助的课题.
      Corresponding author: Guan Xue-Fei, xfguan@gscaep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51975546, U2230204).
    [1]

    Cruzado A, Lucarini S, Lorca J, Segurado J 2018 Int. J. Fatigue 113 236Google Scholar

    [2]

    Lehto P, Remes H, Saukkonen T, Hänninen H, Romanoff J 2014 Mater. Sci. Eng. A 592 28Google Scholar

    [3]

    秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏 2023 材料研究学报 37 502Google Scholar

    Qin H Y, Li Z T, Zhao G P, Zhang W Y, Zhang X M 2023 Chin. J. Mater. Res. 37 502Google Scholar

    [4]

    He K, Chen N F, Wang C J, Wei L S, Chen J K 2018 Cryst. Res. Technol. 53 1700157Google Scholar

    [5]

    Toth L S, Biswas S, Gu C, Beausir B 2013 Mater. Charact. 84 67Google Scholar

    [6]

    Aghaie-Khafri M, Honarvar F, Zanganeh S 2012 J. Nondest. Eval. 31 191Google Scholar

    [7]

    Homa L, Cherry M, Wertz J 2021 Inverse Probl. 37 065004Google Scholar

    [8]

    金士杰, 王志诚, 田鑫, 孙旭, 林莉 2023 航空学报 44 231Google Scholar

    Jin S J, Wang Z C, Tian X, Sun X, Lin L 2023 Acta Aeronaut. Astronaut. Sin. 44 231Google Scholar

    [9]

    朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕 2022 物理学报 71 244301Google Scholar

    Zhu Q, Xu D, Zhang Y J, Li Y J, Wang W, Zhang H Y 2022 Acta Phys. Sin. 71 244301Google Scholar

    [10]

    Liu Y, Tian Q, Guan X F 2021 NDT&E Int. 122 102479Google Scholar

    [11]

    李珊, 李雄兵, 宋永锋, 陈超 2018 物理学报 67 234301Google Scholar

    Li S, Li X B, Song Y F, Chen C 2018 Acta Phys. Sin. 67 234301Google Scholar

    [12]

    东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安 2019 物理学报 68 184301Google Scholar

    Dong R, Liu C C, Cai X B, Shao L L, Li B Y, Ta D A 2019 Acta Phys. Sin. 68 184301Google Scholar

    [13]

    Yu L X, Guo Y M, Margetan F J, Thompson R B 2001 Rev. Prog. Quant. Nondestruct. Eval. 20 1330Google Scholar

    [14]

    Zhang F Z, Wang C S, Wu Y S, Zhou L Z, Tian Q 2022 Mater. Sci. Eng. A 832 142488Google Scholar

    [15]

    Margetan F J, Yu L X, Thompson R B 2005 Rev. Prog. Quant. Nondestruct. Eval. 24 1300Google Scholar

    [16]

    Rokhlin S I, Sha G F, Li J, Pilchak A L 2021 Ultrasonics 115 106433Google Scholar

    [17]

    Liu Y, Tian Q, Yu P, He J J, Guan X F 2022 NDT E Int. 129 102634Google Scholar

    [18]

    Ghoshal G, Turner J A, Weaver R L 2007 J. Acoust. Soc. Am. 122 2009Google Scholar

    [19]

    Arguelles A P, Kube C M, Hu P, Turner J A 2016 T J. Acoust. Soc. Am. 140 1570Google Scholar

    [20]

    Wydra A, Chertov A, Maev R G, Kube C M, Du H L, Turner J A 2015 Res. Nondestruct. Eval. 26 225Google Scholar

    [21]

    Rose J H 1991 Rev. Prog. Quant. Nondestruct. Eval. 10B 1715Google Scholar

    [22]

    Margetan F J, Gray T, Thompson R B 1991 Rev. Prog. Quant. Nondestruct. Eval. 10B 1721Google Scholar

    [23]

    Kube C M, Turner J A 2015 Wave Motion 27 182Google Scholar

    [24]

    Weaver R L 1990 J. Mech. Phys. Solids 38 55Google Scholar

    [25]

    Stanke F E 1986 J. Acoust. Soc. Am. 80 1479Google Scholar

    [26]

    杜金辉, 吕旭东, 董建新, 孙文儒, 毕中南, 赵光普, 邓群, 崔传勇, 马惠萍, 张北江 2019 金属学报 55 1115Google Scholar

    Du J H, Lü X D, Dong J X, Sun W R, Bi Z N, Zhao G P, Deng Q, Cui C Y, Ma H P, Zhang B J 2019 Acta Metallurg. Sin. 55 1115Google Scholar

    [27]

    Haldipur P, Margetan F J, Thompson R B 2004 Rev. Prog. Quant. Nondestructive Eval. 23 1061Google Scholar

  • 图 1  所提出方法基本思路图

    Fig. 1.  Overall development diagram of the backscattering coefficient quantification of grain size.

    图 2  入射波经晶粒散射示意图

    Fig. 2.  Diagram of incident wave and scattered wave.

    图 3  瑞利散射极限和随机散射极限下归一化背散射幅值与归一化频率关系

    Fig. 3.  Normalized backscattering amplitude versus normalized frequency within the Rayleigh limits and stochastic limits.

    图 4  不同频率下背散射幅值与晶粒尺寸关系 (a) 0—100 MHz; (b) 0—20 MHz. 其他参数: $ {c}_{11}=250\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ {c}_{12}= $$ 160\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ {c}_{44}=118\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ \rho =8240\;{\mathrm{k}}{\mathrm{g}}/{{\mathrm{m}}}^{3} $

    Fig. 4.  Backscattering amplitude versus grain sizes in different frequencies: (a) 0–100 MHz; (b) 0–20 MHz, where $ {c}_{11} = $$ 250\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ {c}_{12} = 160\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ {c}_{44} = 118\;{\mathrm{G}}{\mathrm{P}}{\mathrm{a}} $, $ \rho = 8240\;{\mathrm{k}}{\mathrm{g}}/{{\mathrm{m}}}^{3} $

    图 5  实验装置图

    Fig. 5.  Experimental setup.

    图 6  不同试块的时域背散射信号对比

    Fig. 6.  Comparison of backscatter signals of different test blocks in time domain.

    图 7  不同试块的背散射信号均方根对比 (a) 被测GH4742试块; (b) 参考试块

    Fig. 7.  Measured backscatter RMS spectra of different test blocks: (a) GH4742 blocks; (b) reference block.

    图 8  背散射系数实验测量曲线及其拟合结果 (a) No.1; (b) No.2; (c) No.3

    Fig. 8.  Experimental measurement curve of backscattering coefficient and its fitting results: (a) No.1; (b) No.2; (c) No.3.

    图 9  所有试块的金相图 (a) No.1; (b) No.2; (c) No.3

    Fig. 9.  Micrographs of all test blocks: (a) No.1; (b) No.2; (c) No.3.

    表 1  GH4742化学组成成分

    Table 1.  Chemical composition of GH4742.

    成分 Ti Cr Mo Co Nb Mn Fe C Al B Ni
    质量分数% 2.52 14.0 5.12 9.95 2.6 0.2 0.5 0.06 2.54 0.01 Bal.
    下载: 导出CSV

    表 2  晶粒尺寸测量结果对比

    Table 2.  Comparison of grain size measured by micrographs and backscattering coefficient.

    试块 金相法 金相法晶粒度 背散射
    系数法
    背散射系数
    法晶粒度
    No.1 55 μm 5.4 58 μm 5.2
    No.2 77 μm 4.4 103 μm 3.6
    No.3 163 μm 2.2 200 μm 1.7
    下载: 导出CSV
  • [1]

    Cruzado A, Lucarini S, Lorca J, Segurado J 2018 Int. J. Fatigue 113 236Google Scholar

    [2]

    Lehto P, Remes H, Saukkonen T, Hänninen H, Romanoff J 2014 Mater. Sci. Eng. A 592 28Google Scholar

    [3]

    秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏 2023 材料研究学报 37 502Google Scholar

    Qin H Y, Li Z T, Zhao G P, Zhang W Y, Zhang X M 2023 Chin. J. Mater. Res. 37 502Google Scholar

    [4]

    He K, Chen N F, Wang C J, Wei L S, Chen J K 2018 Cryst. Res. Technol. 53 1700157Google Scholar

    [5]

    Toth L S, Biswas S, Gu C, Beausir B 2013 Mater. Charact. 84 67Google Scholar

    [6]

    Aghaie-Khafri M, Honarvar F, Zanganeh S 2012 J. Nondest. Eval. 31 191Google Scholar

    [7]

    Homa L, Cherry M, Wertz J 2021 Inverse Probl. 37 065004Google Scholar

    [8]

    金士杰, 王志诚, 田鑫, 孙旭, 林莉 2023 航空学报 44 231Google Scholar

    Jin S J, Wang Z C, Tian X, Sun X, Lin L 2023 Acta Aeronaut. Astronaut. Sin. 44 231Google Scholar

    [9]

    朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕 2022 物理学报 71 244301Google Scholar

    Zhu Q, Xu D, Zhang Y J, Li Y J, Wang W, Zhang H Y 2022 Acta Phys. Sin. 71 244301Google Scholar

    [10]

    Liu Y, Tian Q, Guan X F 2021 NDT&E Int. 122 102479Google Scholar

    [11]

    李珊, 李雄兵, 宋永锋, 陈超 2018 物理学报 67 234301Google Scholar

    Li S, Li X B, Song Y F, Chen C 2018 Acta Phys. Sin. 67 234301Google Scholar

    [12]

    东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安 2019 物理学报 68 184301Google Scholar

    Dong R, Liu C C, Cai X B, Shao L L, Li B Y, Ta D A 2019 Acta Phys. Sin. 68 184301Google Scholar

    [13]

    Yu L X, Guo Y M, Margetan F J, Thompson R B 2001 Rev. Prog. Quant. Nondestruct. Eval. 20 1330Google Scholar

    [14]

    Zhang F Z, Wang C S, Wu Y S, Zhou L Z, Tian Q 2022 Mater. Sci. Eng. A 832 142488Google Scholar

    [15]

    Margetan F J, Yu L X, Thompson R B 2005 Rev. Prog. Quant. Nondestruct. Eval. 24 1300Google Scholar

    [16]

    Rokhlin S I, Sha G F, Li J, Pilchak A L 2021 Ultrasonics 115 106433Google Scholar

    [17]

    Liu Y, Tian Q, Yu P, He J J, Guan X F 2022 NDT E Int. 129 102634Google Scholar

    [18]

    Ghoshal G, Turner J A, Weaver R L 2007 J. Acoust. Soc. Am. 122 2009Google Scholar

    [19]

    Arguelles A P, Kube C M, Hu P, Turner J A 2016 T J. Acoust. Soc. Am. 140 1570Google Scholar

    [20]

    Wydra A, Chertov A, Maev R G, Kube C M, Du H L, Turner J A 2015 Res. Nondestruct. Eval. 26 225Google Scholar

    [21]

    Rose J H 1991 Rev. Prog. Quant. Nondestruct. Eval. 10B 1715Google Scholar

    [22]

    Margetan F J, Gray T, Thompson R B 1991 Rev. Prog. Quant. Nondestruct. Eval. 10B 1721Google Scholar

    [23]

    Kube C M, Turner J A 2015 Wave Motion 27 182Google Scholar

    [24]

    Weaver R L 1990 J. Mech. Phys. Solids 38 55Google Scholar

    [25]

    Stanke F E 1986 J. Acoust. Soc. Am. 80 1479Google Scholar

    [26]

    杜金辉, 吕旭东, 董建新, 孙文儒, 毕中南, 赵光普, 邓群, 崔传勇, 马惠萍, 张北江 2019 金属学报 55 1115Google Scholar

    Du J H, Lü X D, Dong J X, Sun W R, Bi Z N, Zhao G P, Deng Q, Cui C Y, Ma H P, Zhang B J 2019 Acta Metallurg. Sin. 55 1115Google Scholar

    [27]

    Haldipur P, Margetan F J, Thompson R B 2004 Rev. Prog. Quant. Nondestructive Eval. 23 1061Google Scholar

  • [1] 张雅婧, 李凡, 雷照康, 王铭浩, 王成会, 莫润阳. 非球形气泡的超声定量检测. 物理学报, 2023, 72(3): 034301. doi: 10.7498/aps.72.20222074
    [2] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [3] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210702
    [4] 东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安. 超声背散射骨质评价中的频散衰减测量与补偿. 物理学报, 2019, 68(18): 184301. doi: 10.7498/aps.68.20190599
    [5] 李珊, 李雄兵, 宋永锋, 陈超. 考虑晶粒分布的多晶体材料超声散射统一理论. 物理学报, 2018, 67(23): 234301. doi: 10.7498/aps.67.20181751
    [6] 王鹏, 徐建刚, 张云光, 宋海洋. 晶粒尺寸对纳米多晶铁变形机制影响的模拟研究. 物理学报, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [7] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [8] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] 吴亮亮, 赵德刚, 李亮, 乐伶聪, 陈平, 刘宗顺, 江德生. 金属有机化学气相沉积法生长条件对AlN薄膜面内晶粒尺寸的影响. 物理学报, 2013, 62(8): 086102. doi: 10.7498/aps.62.086102
    [10] 杨卫明, 刘海顺, 敦超超, 赵玉成, 窦林名. Fe基纳米晶合金晶粒尺寸反常变化的物理机制. 物理学报, 2012, 61(10): 106802. doi: 10.7498/aps.61.106802
    [11] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响. 物理学报, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [12] 毛朝梁, 董显林, 王根水, 姚春华, 曹菲, 曹盛, 杨丽慧, 王永令. 晶粒尺寸对Ba0.70Sr0.30TiO3陶瓷介电性能的影响规律及机理研究. 物理学报, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [13] 王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁. 晶粒棱长、尺寸与拓扑学特征之间关系的Monte Carlo仿真研究. 物理学报, 2009, 58(13): 132-S136. doi: 10.7498/aps.58.132
    [14] 余柏林, 祁 琼, 唐新峰, 张清杰. 晶粒尺寸对CoSb3化合物热电性能的影响. 物理学报, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [15] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [16] 冯维存, 高汝伟, 韩广兵, 朱明刚, 李 卫. NdFeB纳米复合永磁材料的交换耦合相互作用和有效各向异性. 物理学报, 2004, 53(9): 3171-3176. doi: 10.7498/aps.53.3171
    [17] 李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究. 物理学报, 2003, 52(8): 2092-2095. doi: 10.7498/aps.52.2092
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/FeMn交换偏置的影响. 物理学报, 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
    [19] 刘卫国, 孔令兵, 张良莹, 姚熹. 多晶铁电薄膜的相变——应力和晶粒尺寸效应. 物理学报, 1996, 45(2): 318-323. doi: 10.7498/aps.45.318
    [20] 王晓平, 赵特秀, 季航, 梁齐, 董翊. 晶粒尺寸对薄膜电阻率温度系数的影响. 物理学报, 1994, 43(2): 297-302. doi: 10.7498/aps.43.297
计量
  • 文章访问数:  1935
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-01-07
  • 上网日期:  2024-01-18
  • 刊出日期:  2024-04-05

/

返回文章
返回