搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平凹多通腔的非线性脉冲压缩技术

李聘滨 滕浩 田文龙 黄振文 朱江峰 钟诗阳 运晨霞 刘文军 魏志义

引用本文:
Citation:

基于平凹多通腔的非线性脉冲压缩技术

李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义

Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity

Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi
PDF
HTML
导出引用
  • 采用平凹多通腔和固体薄片组的非线性脉冲光谱展宽与压缩方案开展了100 W皮秒激光非线性脉冲压缩的研究. 以多片熔融石英薄片作为非线性介质, 在平凹腔中皮秒激光通过自相位调制将光谱宽度由0.24 nm展宽至4.8 nm, 用光栅对进行色散补偿压缩, 实现压缩后的脉冲宽度为483 fs, 对应压缩比为22, 最终输出飞秒激光的平均功率为44.2 W. 相对于常规多通腔方案, 该平凹腔结构紧凑, 光路稳定性好, 压缩比高, 非常有利于非线性光谱展宽与压缩的实现.
    Ultrafast femtosecond laser system with hundreds of microjoules of energy, operating at a repetition frequency of several kilohertz, has very important applications in many fields such as medicine, mid-infrared laser generation, industrial processing, and vibrational spectroscopy. The chirped pulse amplification technique provides a feasible path to obtain light sources with those parameters. However, the use of chirped pulse amplification increases the technical complexity and cost of the laser system. Recently, the proposal of a multi-pass cell (MPC) nonlinear pulse compression technique has enabled us to obtain high power ultrafast femtosecond pulses with reduced technical complexity and cost. The device requires only two concave mirrors and a nonlinear medium in between. In the past seven years, the multi-pass cell nonlinear pulse compression technique has made great progress, making it possible to obtain ultrashort pulses with average power of more than a few kW and peak power of tens to hundreds of TW.In this work, we achieve nonlinear pulse compression of a 100-W picosecond laser by using an improved nonlinear pulse compression scheme that combines a hybrid of a plano-cancave multi-pass cell and multi-thin-plate. Using fused silica plates in plano-cancave cavity, the spectral bandwidth (FWHM) of input picosecond laser is broadened from 0.24 nm to 4.8 nm due to self-phase modulation effect, the pulse is compressed to 483 fs by dispersion compensation using grating pairs, which corresponds to a compression factor of 22, and the final output power of 44.2 W is obtained. Compared with traditional MPC, the plano-cancave cavity scheme we developed is a very promising solution for nonlinear compression due to its compactness, more stability and large compression ratio.
      通信作者: 滕浩, hteng@iphy.ac.cn ; 朱江峰, jfzhu@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604200)和国家自然科学基金(批准号: 12034020)资助的课题.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn ; Zhu Jiang-Feng, jfzhu@xidian.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1604200) and the National Natural Science Foundation of China (Grant No. 12034020).
    [1]

    Mourou G 2019 Rev. Modern Phys. 91 030501Google Scholar

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545Google Scholar

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165Google Scholar

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1Google Scholar

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604Google Scholar

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838Google Scholar

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009Google Scholar

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169Google Scholar

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873Google Scholar

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903Google Scholar

    [15]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [17]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117Google Scholar

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117Google Scholar

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [19]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41Google Scholar

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41Google Scholar

    [20]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [21]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [24]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605Google Scholar

    [27]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250Google Scholar

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1Google Scholar

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084Google Scholar

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919Google Scholar

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201Google Scholar

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252Google Scholar

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686Google Scholar

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222Google Scholar

    [38]

    Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.Google Scholar

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572Google Scholar

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984Google Scholar

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458Google Scholar

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002Google Scholar

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115Google Scholar

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958Google Scholar

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264Google Scholar

  • 图 1  平凹多通腔结构示意图

    Fig. 1.  Schematic diagram of plano-cancave multi-pass cavity structure.

    图 2  常规双凹多通腔原理示意图

    Fig. 2.  Schematic diagram of conventional double concave multi-pass cavity principle.

    图 3  平凹多通腔原理示意图

    Fig. 3.  Schematic diagram of plano-cancave multi-pass cavity principle.

    图 4  常规双凹MPC光斑分布示意图 (a)凹面反射镜1; (b)凹面反射镜2

    Fig. 4.  Schematic diagram of conventional double concave MPC spot distribution: (a) Concave mirror 1; (b) concave mirror 2.

    图 5  平凹MPC光斑分布示意图 (a) 凹面反射镜1; (b)平面反射镜2

    Fig. 5.  Schematic diagram of plano-cancave MPC spot distribution: (a) Concave mirror 1; (b) plano mirror 2.

    图 6  平凹MPC非线性脉冲压缩装置示意图(HR, 高反镜; L1—L4, 透镜; TG1和TG2, 光栅)

    Fig. 6.  Schematic diagram of plano-cancave MPC pulse nonlinear compression device. HR, high reflective mirrors; L1−L4, Lens; TG1 and TG2, transmission gratings.

    图 7  皮秒激光器输出特性 (a)输出光谱; (b)输出脉冲宽度自相关信号

    Fig. 7.  Output characteristics picosecond of laser: (a) Output spectrum; (b) autocorrelation signal of output pulse width.

    图 8  MPC展宽前后的光谱示意图

    Fig. 8.  Spectral schematic before and after MPC broadening.

    图 9  MPC压缩后的脉冲自相关曲线

    Fig. 9.  Measured autocorrelation signal of output pulse after MPC compression.

    图 10  输出光束质量 (a)皮秒激光器输出光束质量; (b) MPC输出光束质量

    Fig. 10.  Output beam quality: (a) Picosecond laser output beam quality; (b) MPC output beam quality.

    表 1  单级MPC非线性脉冲压缩技术研究进展

    Table 1.  Progress in single-stage MPC nonlinear pulse compression technique.

    输入功率/W 输入脉宽/fs 重复频率/MHz 输出功率/W 输出脉宽/fs 压缩比 介质 文献
    416 850 10 375 170 5 FS [28]
    95 230 18.5 84 35 6 FS [31]
    34 300 0.2 30 31 10 FS [32]
    112 1240 1 65 39 31 FS [33]
    1.6 12500 0.008 1.23 601 20 FS [34]
    24 275 0.15 24 33 8 Ar [35]
    320 730 0.1 250 56 13 Ar [36]
    550 590 0.5 530 30 19 Ar [37]
    8.6 1200 0.001 7.9 44 27 Ar [38]
    65 138 0.3 51 35 4 Ar [39]
    210 670 0.1 203 134 5 Ar [42]
    下载: 导出CSV
  • [1]

    Mourou G 2019 Rev. Modern Phys. 91 030501Google Scholar

    [2]

    Fattahi H, Barros H G, Gorjan M, Nubbemeyer T, Alsaif B, Teisset C Y, Schultze M, Prinz S, Haefner M, Ueffing M, Alismail A, Vámos L, Schwarz A, Pronin O, Brons J, Geng X T, Arisholm G, Ciappina M, Yakovlev V S, Kim D E, Azzeer A M, Karpowicz N, Sutter D, Major Z, Metzger T, Krausz F 2014 Optica 1 45Google Scholar

    [3]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447Google Scholar

    [4]

    Brabec T, Krausz F 2000 Rev. Modern Phys. 72 545Google Scholar

    [5]

    Kärtner F X, Morgner U, Ell R, Ippen E P, Fujimoto J G, Scheuer V, Angelow, Tschudi T 2001 The 4th Pacific Rim Conference on Lasers and Electro-Optics Chiba, Japan, July 15–19, 2001 pTuJ3_1

    [6]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang Z Y, Huang P, Cao P, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [7]

    Bagnoud V, Salin F 2000 Appl. Phys. B 70 S165Google Scholar

    [8]

    Sun D, Gao J, Wang W, Du X, Gao Y X, Gao Z C, Liang X Y 2021 IEEE Photonics J. 13 1Google Scholar

    [9]

    Schneider W, Ryabov A, Lombosi C S, Metzger T, Major Z S, Fülöp Z A, Baum P 2014 Opt. Lett. 39 6604Google Scholar

    [10]

    Wang D, Du Y L, Wu Y C, Xu L, An X C, Cao L Q, Li M, Wang J T, Sahng J L, Zhou T J, Tong LX, Gao Q S, Zhang K, Tang C, Zhu R H 2018 Opt. Lett. 43 3838Google Scholar

    [11]

    Gao Q S, Zhou T J, Shang J L, Wang D, Li M, Wu Y C, Wang J T, Wang Y N, Xu L, Du Y L, Chen X M, Zhang K, Tang C 2020 High Power and Particle Beams 32 121009Google Scholar

    [12]

    Russbueldt P, Mans T, Weitenberg J, Hoffmann H D, Poprawe P 2010 Opt. Lett. 35 4169Google Scholar

    [13]

    Veselis L, Bartulevicius T, Madeikis K, Michailovas A, Rusteika N 2018 Opt. Express 26 31873Google Scholar

    [14]

    Knall J M, Engholm M, Boilard T, Bernier M, Digonnet M J 2021 Phys. Rev. Lett. 127 013903Google Scholar

    [15]

    高清松, 胡浩, 裴正平, 童立新, 周唐建, 唐淳 2012 中国激光 39 7

    Gao Q S, Hu H, Pei Z P, Tong L X, Zhou T J, Tang C 2012 Chin. J. Lasers 39 7

    [16]

    Dietz T, Jenne M, Bauer D, Scharun M, Sutter D, Killi A 2020 Opt. Express 28 11415Google Scholar

    [17]

    王海林, 董静, 刘贺言, 郝婧婕, 朱晓, 张金伟 2021 光子学报 50 117Google Scholar

    Wang H L, Dong J, Liu H Y, Hao J J, Zhu X, Zhang J W 2021 Acta Photonica Sin. 50 117Google Scholar

    [18]

    Nubbemeyer T, Kaumanns M, Ueffing M, Gorjan M, Alismail A, Fattahi H, Brons J, Pronin O, Barros H G, Major Z, Metzger T, Sutter D, Krausz F 2017 Opt. Lett. 42 1381Google Scholar

    [19]

    董雪岩, 李平雪, 李舜, 王婷婷, 杨敏 2021 中国激光 48 41Google Scholar

    Dong X Y, Li P X, Li Y, Wang T T, Yang M 2021 Chin. J. Lasers 48 41Google Scholar

    [20]

    Khazanov E A 2022 Quantum Electron. 52 208Google Scholar

    [21]

    Nagy T, Simon P, Veisz L 2021 Adv. Phys. X 6 1845795Google Scholar

    [22]

    Viotti A L, Seidel M, Escoto E, Rajhans S, Leemans W P, Hartl I, Heyl C M 2022 Optica 9 197Google Scholar

    [23]

    Jocher C, Eidam T, Hädrich S, Limpert J, Tünnermann A 2012 Opt. Lett. 37 4407Google Scholar

    [24]

    Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar

    [25]

    Hädrich S, Krebs M, Hoffmann A, Klenke A, Rothhardt J, Limpert J, Tünnermann A 2015 Light Sci. Appl. 4 e320Google Scholar

    [26]

    Rothhardt J, Hädrich S, Carstens H, Herrick N, Demmler S, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4605Google Scholar

    [27]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [28]

    Schulte J, Sartorius T, Weitenberg J, Vernaleken A, Russbueldt P 2016 Opt. Lett. 41 4511Google Scholar

    [29]

    Grebing C, Müller M, Buldt J, Stark H, Limpert J 2020 Opt. Lett. 45 6250Google Scholar

    [30]

    Kaumanns M, Kormin D, Nubbemeyer T, Pervak V, Karsch S 2021 Opt. Lett. 46 929Google Scholar

    [31]

    Weitenberg J, Saule T, Schulte J, Russbueldt P 2017 IEEE J. Quantum Electron. 53 1Google Scholar

    [32]

    Raab A K, Seidel M, Guo C, Sytcevich I, Arisholm G, Anne L H, Cord L A, Viotti A L 2022 Opt. Lett. 47 5084Google Scholar

    [33]

    Seidel M, Balla P, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M 2022 Ultraf. Sci. 17 9754919Google Scholar

    [34]

    Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F, Wei Z Y 2021 Chin. Opt. Lett. 19 093201Google Scholar

    [35]

    Lavenu L, Natile M, Guichard F, Zaouter Y, Delen X, Hanna M, Mottay E, Georges P 2018 Opt. Lett. 43 2252Google Scholar

    [36]

    Viotti A L, Alisauskas S, Tünnermann H, Escoto E, Seidel M, Dudde K, Manschwetus B, Hartl I, Christoph M H 2021 Opt. Lett. 46 4686Google Scholar

    [37]

    Russbueldt P, Weitenberg J, Schulte J, Meyer R, Meinhardt C, Hoffmann H D, Poprawe R 2019 Opt. Lett. 44 5222Google Scholar

    [38]

    Rajhans S, Velpula P K, Escoto E, Shalloo R, Farace B, Põder K, Osterhoff J, Leemans W P, Hartl I, Heyl C M 2021 Advanced Solid State Lasers Washington, DC, USA, October 3–7, 2021 paper AW2A.6

    [39]

    Gierschke P, Grebing C, Abdelaal M, Lenski M, Buldt J, Wang Z, Heuermann T, Mueller M, Gebhardt M, Rothhardt J, Limpert J 2022 Opt. Lett. 47 3511.Google Scholar

    [40]

    Balla P, Wahid A B, Sytcevich I, Guo C, Viotti A L, Silletti L, Cartella A, Alisauskas S, Tavakol H, Grosse-Wortmann U, Schönberg A, Seidel M, Trabattoni A, Manschwetus B, Lang T, Calegari F, Couairon A, L’Huillier A, Arnold C L, Hartl I, Heyl C M 2020 Opt. Lett. 45 2572Google Scholar

    [41]

    Viotti A L, Li C, Arisholm G, Winkelmann L, Hartl I, Heyl C M, Seidel M 2023 Opt. Lett. 48 984Google Scholar

    [42]

    Omar A, Vogel T, Hoffmann M, Saraceno C J 2023 Opt. Lett. 48 1458Google Scholar

    [43]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 J. Phys. Photonics 4 014002Google Scholar

    [44]

    Tsai C L, Meyer F, Omar A, Wang Y C, Liang A X, Lu C H, Hoffmann M, Yang S D, Saraceno C J 2019 Opt. Lett. 44 4115Google Scholar

    [45]

    Lavenu L, Natile M, Guichard F, Délen X, Hanna M, Zaouter Y, Georges P 2019 Opt. Express 27 1958Google Scholar

    [46]

    Daniault L, Cheng Z, Kaur J, Hergott J F, Réau F, Tcherbakoff O, Daher N, Délen X, Hanna M, Rodrigo L M 2021 Opt. Lett. 46 5264Google Scholar

  • [1] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术. 物理学报, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [3] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [4] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [5] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211665
    [7] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [8] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [9] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [10] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [11] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [12] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [13] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [14] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭. 飞秒激光器中超宽带色散补偿啁啾镜对的设计. 物理学报, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [15] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [16] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  1686
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-04-22
  • 上网日期:  2024-04-28
  • 刊出日期:  2024-06-20

/

返回文章
返回