-
交联聚乙烯(cross-linked polyethylene, XLPE)因其优异的力学性能和绝缘性能广泛应用于电力电缆领域中, 但在高压电缆的运行过程中XLPE不可避免会受到电老化、热老化和电-热联合老化的影响, 使得材料的性能和寿命下降, 因此需要对XLPE的老化性能和使用寿命进行调控. 本文介绍了XLPE的结构特性和交联机理, 系统分析了其老化过程及影响机制, 并概述了接枝、共混和纳米粒子改性等调控策略, 同时基于寿命评估模型探究了XLPE因老化而导致的寿命衰减问题. 最后, 展望了调控XLPE电缆绝缘材料使用寿命策略的未来方向, 为XLPE电缆绝缘材料的进一步改进和长期稳定运行提供理论指导.Cross-linked polyethylene (XLPE) has been widely used in the field of power cables due to its excellent mechanical properties and insulating properties. However, during the manufacturing of high voltage cables, XLPE will inevitably be affected by electrical aging, thermal aging and electro-thermal combined aging, which makes the resistance and life of the material decline. Therefore, it is necessary to enhance the aging resistance of XLPE without affecting its mechanical properties and insulating properties, so as to extend its service life. In this work, the structural characteristics and cross-linking mechanism of XLPE are introduced, the aging process and influencing mechanism are systematically analyzed, and the life decay problems of XLPE due to aging are explored by using methods such as the temperature Arrhenius equation and the inverse power law of voltage. The improvement strategies such as grafting, blending, and nanoparticle modification can be used to enhance the thermal stability, antioxidant properties, and thermal aging resistance of XLPE, thereby extending its service life. Finally, the strategies of adjusting and controlling the service life of XLPE cable insulation materials in the future are discussed, which provide theoretical guidance for further improving long-term stable operation of XLPE cable insulation materials.
-
Keywords:
- cross-linked polyethylene /
- cross-linking mechanism /
- aging resistance /
- long service life
[1] Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar
[2] Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar
[3] 张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar
Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar
[4] 郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)
Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology
[5] D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar
[6] Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar
[7] Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar
[8] Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar
[9] 张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar
Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar
[10] 俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar
Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar
[11] Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar
[12] Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar
[13] Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar
[14] Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar
[15] Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar
[16] 聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar
Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar
[17] Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar
[18] 张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar
Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar
[19] Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar
[20] Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar
[21] Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar
[22] Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar
[23] Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar
[24] Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar
[25] Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar
[26] Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar
[27] Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar
[28] Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar
[29] Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar
[30] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 物理学报 7 070701Google Scholar
Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar
[31] Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar
[32] Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar
[33] 何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar
He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar
[34] 王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar
Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar
[35] Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar
[36] 廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar
Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar
[37] 胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar
Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar
[38] 郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar
Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar
[39] Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar
[40] 沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar
Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar
[41] 王春逢 2021 硕士学位论文(大连: 大连理工大学)
Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology
[42] 张宇涵 2019 硕士学位论文(上海: 东华大学)
Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University
[43] 朱健 2017 硕士学位论文(成都: 西南交通大学)
Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University
[44] 廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar
Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar
[45] He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar
[46] Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar
[47] Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar
[48] Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar
[49] Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar
[50] 孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar
Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar
[51] Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar
[52] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar
Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar
[53] Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar
[54] Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar
[55] Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar
[56] Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar
[57] Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar
[58] Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar
[59] Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar
-
-
[1] Pourrahimi A M, Kumara S, Palmieri F, Yu L Y, Lund A, Hammarström T, Hagstrand P O, Scheblykin I, Fabiani D, Xu X D, Müller C 2021 Adv. Mater. 33 e2100714Google Scholar
[2] Chen G, Hao M, Xu Z Q, Alun V, Cao J Z, Wang H T 2015 CSEE J. Power Energy Syst. 1 9Google Scholar
[3] 张翀, 查俊伟, 王思蛟, 巫运辉, 闫轰达, 李维康, 陈新, 党智敏 2016 绝缘材料 49 1Google Scholar
Zhang C, Zha J W, Wang S J, Wu Y H, Yan H D, Li W K, Chen X, Dang Z M 2016 Insul. Mater. 49 1Google Scholar
[4] 郑元浩 2022 硕士学位论文(青岛: 青岛科技大学)
Zheng Y H 2022 M. S. Thesis (Qingdao: Qingdao University Science & Technology
[5] D’Auria S, Pourrahimi A M, Favero A, Neuteboom P, Xu X D, Haraguchi S, Bek M, Kádár R, Dalcanale E, Pinalli R, Müller C, Vachon J 2023 Adv. Funct. Mater. 33 2301878Google Scholar
[6] Wang S J, Zha J W, Wu Y H, Ren L, Dang Z M, Wu J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3350Google Scholar
[7] Wang S J, Zha J W, Li W K, Dang Z M 2016 Appl. Phys. Lett. 108 092902Google Scholar
[8] Wang S J, Zha J W, Li W K, Zhang D L, Dang Z M 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1365Google Scholar
[9] 张雅茹, 邵清, 李娟, 袁浩, 李琦, 何金良 2022 石油化工 51 587Google Scholar
Zhang Y R, Shao Q, Li J, Yuan H, Li Q, He J L 2022 Petrochem. Technol. 51 587Google Scholar
[10] 俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar
Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar
[11] Zha J W, Yan H D, Li W K, Dang Z M 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1088Google Scholar
[12] Zhang Y Y, Gu G F, Liu J F, Jiang F Y, Fan Y F, Zha J W 2022 Front. Mater. 9 838792Google Scholar
[13] Li H, Li J Y, Li W W, Zhao X T, Wang G L, Alim M A 2013 J. Mater. Sci. : Mater. Electron. 24 1640Google Scholar
[14] Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337Google Scholar
[15] Liang C B, Song P, Gu H B, Ma C, Guo Y Q, Zhang H Y, Xu X J, Zhang Q Y, Gu J W 2017 Compos. A: Appl. Sci. Manufact. 102 126Google Scholar
[16] 聂永杰, 赵现平, 李盛涛 2019 物理学报 68 227201Google Scholar
Nie Y J, Zhao X P, Li S T 2019 Acta Phys. Sin. 68 227201Google Scholar
[17] Zha J W, Qin Q Q, Dang Z M 2019 IEEE Trans. Dielectr. Electr. Insul. 26 868Google Scholar
[18] 张成, 李洪飞, 杨延滨, 王卫东, 任成燕, 黄兴溢, 江平开 2020 绝缘材料 53 19Google Scholar
Zhang C, Li H F, Yang Y B, Wang W D, Ren C Y, Huang X Y, Jiang P K 2020 Insul. Mater. 53 19Google Scholar
[19] Xu N, Zhong L S, Sui R, Ahmed M, Li F, Liu Y B, Gao J H 2022 Macromolecules 55 8186Google Scholar
[20] Green C D, Vaughan A S, Stevens G C, Pye A, Sutton S J, Geussens T, Fairhurst M J 2015 IEEE Trans. Dielectr. Electr. Insul. 22 639Google Scholar
[21] Xing Y Q, Liu J H, Su J G, Zha J W, Li G C, Guo Z, Zhao X Z, Feng M J 2023 High Volt. 1–11Google Scholar
[22] Zhao X D, Sun W F, Zhao H 2019 Polymers 11 592Google Scholar
[23] Liu Y X, Sun J Y, Chen S P, Sha J J, Yang J K 2022 Thermochim. Acta 713 179231Google Scholar
[24] Pleşa I, Noţingher P V, Stancu C, Wiesbrock F, Schlögl S 2018 Polymers 11 24Google Scholar
[25] Zhang H, Shang Y, Li M X, Zhao H, Wang X, Han B Z 2016 RSC Adv. 6 110831Google Scholar
[26] Chen T H, Li Q Y, Fu Z W, Sun L W, Guo W H, Wu C F 2018 Polym. Bull. 75 2181Google Scholar
[27] Backens S, Ofe S, Schmidt S, Glück N, Flügge W 2022 Mater. Test. 64 186Google Scholar
[28] Ahmed M, Zhong L S, Li F, Xu N, Gao J H 2022 Materials 15 5857Google Scholar
[29] Kim C, Jin Z J, Jiang P K, Zhu Z S, Wang G L 2006 Polym. Test. 25 553Google Scholar
[30] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧 2024 物理学报 7 070701Google Scholar
Li G C, Guo K Y, Zhang J H, Sun W X, Zhu Y W, Li S T, Wei Y H 2024 Acta Phys. Sin. 7 070701Google Scholar
[31] Ding M, He W F, Wang J H, Wang J P 2022 Polymers 14 2282Google Scholar
[32] Wan D, Qi F, Zhou Q, Zhou H Y, Zhao M, Duan X J 2021 J. Electr. Eng. Technol. 16 2885Google Scholar
[33] 何勇, 林凯, 梁汉远, 李振展 2023 广东化工 50 79Google Scholar
He Y, Lin K, Liang H Y, Li Z Z 2023 Guangdong Chem. Ind. 50 79Google Scholar
[34] 王兆琛, 段玉兵, 魏艳慧, 李国倡, 兰锐, 郝春成, 雷清泉 2023 高压电器 59 56Google Scholar
Wang Z C, Duan Y B, Wei Y H, Li G C, Lan R, He C C, Lei Q Q 2023 High Volt. Appar. 59 56Google Scholar
[35] Kim C, Jiang P K, Liu F, Hyon S, Ri M G, Yu Y, Ho M 2019 Polym. Test. 80 106045Google Scholar
[36] 廖雁群, 冯冰, 罗潘, 张连杰, 卢志华, 徐阳 2016 绝缘材料 49 1Google Scholar
Liao Y Q, Feng B, Luo P, Zhang L J, Lu Z H, Xu Y 2016 Insul. Mater. 49 1Google Scholar
[37] 胡一卓, 董明, 谢佳成, 何文林, 汪可, 李金忠 2020 电网技术 44 1276Google Scholar
Hu Y Z, Dong M, Xie J C, He W L, Wang K, Li J Z 2020 Power Syst. Tech. 44 1276Google Scholar
[38] 郑书生, 张宗衡, 孔举, 赵岩, 闫枭虎, 吴诗优 2023 绝缘材料 56 70Google Scholar
Zheng S S, Zhang Z H, Kong J, Zhao Y, Yan X H, Wu S Y 2023 Insul. Mater. 56 70Google Scholar
[39] Hedir A, Slimani F, Moudoud M, Lamrous O, Durmus A, Fofana I 2022 Eng. Res. Express 4 015038Google Scholar
[40] 沈智飞, 柳宝坤, 王国栋, 李诗雨, 王娟, 黄静, 张恒玮, 周凯 2021 绝缘材料 54 60Google Scholar
Shen Z F, Liu B K, Wang G D, Li S Y, Wang J, Huang J, Zhang H W, Zhou K 2021 Insul. Mater. 54 60Google Scholar
[41] 王春逢 2021 硕士学位论文(大连: 大连理工大学)
Wang C F 2021 M. S. Thesis (Dalian: Dalian University of Technology
[42] 张宇涵 2019 硕士学位论文(上海: 东华大学)
Zhang Y H 2019 M. S. Thesis (Shanghai: Donghua University
[43] 朱健 2017 硕士学位论文(成都: 西南交通大学)
Zhu J 2017 M. S. Thesis (Chengdu: Southwest Jiaotong University
[44] 廖瑞金, 解兵, 杨丽君, 梁帅伟, 程涣超, 孙才新, 向彬 2006 电工技术学报 21 17Google Scholar
Liao R J, Xie B, Yang L J, Liang S W, Cheng H C, Sun C X, Xiang B 2006 Trans. China Electr. Soc. 21 17Google Scholar
[45] He D X, Gu J F, Wang W, Liu S Y, Song S, Yi D H 2017 Polym. Adv. Technol. 28 1020Google Scholar
[46] Kim J, Yoon S, Kim D 2021 J. Electr. Eng. Technol. 16 1Google Scholar
[47] Roy S S, Paramane A, Singh J, Meng F, Dai C, Das A K, Chatterjee S, Chen X R, Tanaka Y 2022 IEEE Trans. Dielectr. Electr. Insul. 30 377Google Scholar
[48] Li L, Ma X M, Guo W 2022 Secur. Commun. Netw. 2022 1Google Scholar
[49] Alghamdi A S, Desuqi R K 2020 Heliyon 6 e03120Google Scholar
[50] 孙建宇, 陈绍平, 沙菁㛃, 高俊国, 刘焱鑫, 杨决宽, 倪中华 2022 电机与控制学报 26 31Google Scholar
Sun J Y, Chen S P, Sha J J, Gao J G, Liu Y X, Yang J K, Ni Z H 2022 Electric Machines and Control. 26 31Google Scholar
[51] Li G C, Wang Z C, Lan R, Wei Y H, Nie Y J, Li S T, Li Q Q 2023 IEEE Trans. Dielectr. Electr. Insul. 30 761Google Scholar
[52] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar
Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar
[53] Li J L, Mou W J, Zhu J X, Hu C Q 2023 J Appl. Polym. Sci. 140 e54420Google Scholar
[54] Wang Y Y, Wang C, Zhang Z X, Xiao K 2017 Nanomaterials 7 320Google Scholar
[55] Zhang C C, Wang T T, Li C Y, Zhao H, Wang X 2023 IEEE Trans. Dielect. Electr. Insul. 30 56Google Scholar
[56] Zych A, Verdelli A, Soliman M, Pinalli R, Vachon J, Dalcanale E 2019 Polym. Chem. 10 1741Google Scholar
[57] Caffy F, Nicolaÿ R 2019 Polym. Chem. 10 3107Google Scholar
[58] Mao H D, Zhang T T, Guo Z Y, Bai D Y, Wang J, Xiu H, Fu Q 2023 Chin. J. Polym. Sci. 41 1104Google Scholar
[59] Zhao Y B, Mao H D, Zhang T T, Guo Z Y, Bai D Y, Bai H W, Zhang Q, Xiu H, Fu Q 2022 Ind. Eng. Chem. Res. 61 13126Google Scholar
计量
- 文章访问数: 4302
- PDF下载量: 292
- 被引次数: 0