搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sb3+/Er3+共掺杂Cs2NaGdCl6双钙钛矿中能量传递机制与可调谐发光的研究

班季峰 李忠辉 张兴隆 刘长立 赵星胜 周恒为 蒋小康

引用本文:
Citation:

Sb3+/Er3+共掺杂Cs2NaGdCl6双钙钛矿中能量传递机制与可调谐发光的研究

班季峰, 李忠辉, 张兴隆, 刘长立, 赵星胜, 周恒为, 蒋小康

Color-Tunable Luminescence via Energy Transfer in Sb3+/Er3+ Co-doped Cs2NaGdCl6 Double Perovskite

BAN jifeng, LI zhonghui, ZHANG xinglong, ZHAO Xingshen, LIU Changli, ZHOU Hengwei, JIANG Xiaokang
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 开发高效、稳定且发光颜色可调的无铅钙钛矿荧光粉是推动其在新一代发光器件中应用的核心挑战。本研究采用微波固相法成功合成了一系列不同浓度的 Er3+ 掺杂 Cs2NaGd0.985Cl6:0.015Sb3+ 荧光粉。XRD 结果表明,Er3+ 的引入未引起晶体结构变化或产生杂质相。在 336 nm 紫外光激发下,该材料同时展现出源于基质自陷态激子(STE)的 460 nm 宽带蓝光发射和 Er3+ 离子的特征绿光/红光发射(524 nm, 550 nm, 667 nm)。通过研究浓度依赖的发光行为,发现最优 Er3+ 掺杂浓度为 0.03,此时发光强度最大,量子效率(PLQY)达到 37.09%;其浓度猝灭机制被证实为电偶极-电偶极相互作用。在该优化浓度下,证实了从基质 STE 到 Er3+ 离子之间存在有效的能量传递通道,能量传递效率为 24.58%。此外,优化样品 Cs2NaGd0.955Cl6:0.015Sb3+,0.03Er3+ 表现出良好的热稳定性,在 423 K 高温下的发光强度仍能维持室温(298 K)下的 69.4%。更为重要的是,通过调节Er3+掺杂浓度,成功实现了发光颜色从蓝光(CIE: 0.160, 0.194)到绿光(CIE: 0.215, 0.374)的可调谐。本研究不仅阐明了 Sb3+/Er3+ 共掺杂双钙钛矿中的能量传递机制,而且所制备的高稳定性、颜色可调的荧光粉展现出在绿光发光二极管(LED)中的应用潜力。
    The development of highly efficient, stable, and color-tunable lead-free perovskite phosphors is a central challenge for their application in next-generation optoelectronic devices. In this work, a series of Cs2NaGd0.985Cl6:0.015Sb3+ phosphors with varying Er3+ concentrations were successfully synthesized via a microwave-assisted solid-state method. XRD results confirmed that the introduction of Er3+ did not induce any crystal structure change or impurity phase formation. Under 336 nm excitation, the material exhibited a broad blue emission centered at 460 nm from self-trapped excitons (STEs) of the host, alongside characteristic green/red emissions of Er3+ ions (524 nm, 550 nm, 667 nm). By investigating the concentration-dependent luminescence behavior, the optimal Er3+ doping concentration was determined to be 0.03, yielding the maximum emission intensity with an absolute photoluminescence quantum yield (PLQY) of 37.09%; the concentration quenching mechanism was attributed to electric dipole-dipole interaction. At this optimal concentration, More importantly, at the optimal concentration, steady-state and transient fluorescence spectroscopy analysis confirmed the existence of an efficient energy transfer channel from the host STEs to Er3+ ions, with a calculated energy transfer efficiency of 24.58%. This process significantly enhances the characteristic emission of Er3+ and is key to achieving efficient multicolor luminescence. Furthermore, the optimized sample Cs2NaGd0.955Cl6:0.015Sb3+,0.03Er3+ demonstrated excellent thermal stability, retaining 69.4% of its room-temperature (298 K) emission intensity at 423 K. More importantly, tunable luminescence from blue (CIE: 0.160, 0.194) to green (CIE: 0.215, 0.374) was successfully achieved by simply adjusting the Er3+ concentration. this work not only provides an in-depth elucidation of the energy transfer pathways and concentration quenching mechanisms in Sb3+/Er3+ co-doped double perovskite systems from a physical mechanism perspective, but also experimentally demonstrates that the developed lead-free phosphors—combining high quantum efficiency, excellent thermal stability, and broad color tunability into a single material—exhibit promising potential for application as core luminescent materials in high-performance, environmentally friendly green light-emitting diodes (LEDs).
  • [1]

    Li G, Wisnivesky Rocca Rivarola F, Davis N J, Bai S., Jellicoe T C, de la Pena F, Tan Z K 2016 Adv. Mater. 28 3528

    [2]

    Jiang Q, Zhu K 2024 Nat. Rev. Mater. 9 399

    [3]

    Tao H, Fang Y, Zhang Y, Zhang Y, Hu J 2024 Ceram. Int. 50 28877

    [4]

    Guan X, Li Y, Meng Y, Wang K, Lin K, Luo Y, Wei Z 2024 Nat. Commun. 1 9913

    [5]

    Grandhi G K, Viswanath N S M, Cho H B, Han J H, Kim S M, Choi S, Im W B 2020 J. Phys. Chem. Lett. 11 7723

    [6]

    Morgan E E, Mao L, Teicher S M, Wu G, 2020 Inorg. Chem. 59 3387

    [7]

    Zhao C, Gao Y, Qiu J 2023 ACS Appl. Mater. Interfaces. 15 59610

    [8]

    Mahor Y, Mir W J, Nag A 2019 J. Phys. Chem. C. 123 15787

    [9]

    Dahl J C, Osowiecki W T, Cai Y, Swabeck J K, Bekenstein Y, Asta M, Alivisatos A P 2019 Chem. Mater. 31 3134

    [10]

    Lee W, Choi D, Kim S 2020 Chem. Mater. 32 6864

    [11]

    Tan C, Zhang S, Wang, Yao J, Liu H, Zou B, Zeng R 2024 Inorg. Chem. Front. 11 3607

    [12]

    Jing Y, Liu Y, Li M, Xia Z 2021 Adv. Opt. Mater. 9 2002213.

    [13]

    Zhou J, Rong X, Molokeev M S, Wang Y, Yun X, Xu D, Li X 2021 Mater. Chem. Front. 5 4997

    [14]

    Zhou J, Yun X, Wang R, Xu D, Li X 2021 Mater. Chem. Front. 5 6133

    [15]

    Yu Q, Lv S, Liu J, Zhang P, Hao S, Zhu C, Yang C 2024 J. Alloys Compd. 983 173854

    [16]

    Zeng R, Zhang L, Xue Y, Ke B, Zhao Z, Huang D, Zou B 2020 J. Phys. Chem. Lett. 11 2053

    [17]

    Liu X, Xu X, Li B, Yang L, Li Q, Jiang H, Xu D 2020 Small 16 2002547

    [18]

    Saikia S, Gopal A, Rathod R, Joshi A, Priolkar K R, Saha S, Santra P K, Shanmuganathan K, Nag A 2025 Angew. Chem. Int. Ed. 64 e202415003

    [19]

    Sun R, Lu P, Zhou D L,Xu W, Ding N, Shao H, Zhang Y, Li D Y, Wang N, Zhuang X M, Dong B, Bai X, Song H W 2020 ACS Energy Lett. 5 2131

    [20]

    Xu H Q, Liu J, Hu Q C, Yu J Y, Han Q J, Wu W Z 2024 Adv. Opt. Mater. 12 2302288

    [21]

    Yang D Y, Cui R R, Deng C Y 2024 J. Rare Earths 43 1821

    [22]

    Wang Y Z, Liu Y T, Li Q M, Meng L L, Yao H, Chen Q, Sheng S Q, Xiao J 2025 Mater. Lett. 385 138208

    [23]

    Li Z H, Jiang X K, Wang J X, Zhao Y, Zhou H W 2024 J.Lumin. 45 1667 (in Chinese)[李忠辉, 蒋小康, 王佳旭, 赵炎, 周恒为 2024 发光学报 45 1667 ]

    [24]

    Jin Q R, Shi J R, Jin J W, Xu W L, Chen S Q, Pan Y X 2024 J. Mater. Chem. C 12 5615

    [25]

    Wang H Y, Yao J D, Wei Q L, Zhao J L, Zou B S, Zeng R S 2023 Adv. Opt. Mater. 11 2300694

    [26]

    Gai S J, Gao P X, Chen K, Tang C Z, Zhao Y Y, Wei J Q, Zhang Y, Molokeev M M, Zhou Z 2024 Adv. Opt. Mater. 12 2302870

    [27]

    Han J H, Samanta T, Cho H B, Jang S W, Viswanath N S M, Kim Y R, Seo J M, Im W B 2023 Adv. Mater. 35 2302442

    [28]

    Liu Z, Huang Y P, Chen T H, Feng W L 2024 J. Solid State Chem. 329 124431

    [29]

    Deng B, Jiang J H, Chen W S, Zhang A L, Liang Z K, Li F, Zeng F H, Zhang G G 2022 Inorg. Chem. Commun. 145 110051

    [30]

    Yang S W, Wu M, He C, Wu Y P, Zhang Y J, Yu J J 2024 J. Alloys Compd. 989 174295

    [31]

    Cao J L, Ren Q, Hai O 2024 Ceram. Int. 50 15668

    [32]

    Guo X X, Wei J H, Luo J B, He Z L, Zhang Z Z, Chen J H, Kuang D B 2024 Adv. Opt. Mater. 12 2301914

    [33]

    Ru J J, Zhao B, Zeng F, Guo F Y 2024 Bull. Mater. Sci. 47 74

    [34]

    Chen Y L, Wu H Y, Li Y M, Liu Z P, Wan J Y, Hu Y H 2023 J. Mater. Sci.: Mater. Electron. 34 1740

  • [1] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, doi: 10.7498/aps.71.20211719
    [2] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, doi: 10.7498/aps.70.20211719
    [3] 李永进, 黄杨彬, 刘群, 邱建备, 尹兆益, 宋志国. 近紫外激发具有颜色可调的Er3+/Eu3+共掺BiOCl荧光粉. 物理学报, doi: 10.7498/aps.64.177803
    [4] 任国浩, 裴钰, 吴云涛, 陈晓峰, 李焕英, 潘尚可. 铈离子掺杂浓度对氯化镧(LaCl3:Ce)闪烁晶体发光性能的影响. 物理学报, doi: 10.7498/aps.63.037802
    [5] 罗林龄, 唐科, 朱达川, 韩涛, 赵聪. Li+和Er3+掺杂对Ba2SiO4:Eu2+发光性能的影响. 物理学报, doi: 10.7498/aps.62.157802
    [6] 米瑞宇, 夏志国, 刘海坤. Ce3+, Mn2+共掺的Ca4Y6 (SiO4)6F2的发光性质和能量传递. 物理学报, doi: 10.7498/aps.62.137802
    [7] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, doi: 10.7498/aps.62.117803
    [8] 杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池. Ce3+ 掺杂高密度氧化物玻璃的闪烁性能研究. 物理学报, doi: 10.7498/aps.61.192901
    [9] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, doi: 10.7498/aps.61.117801
    [10] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, doi: 10.7498/aps.59.3432
    [11] 肖思国, 阳效良, 丁建文. Er3+,Er3+/Yb3+掺杂氟化镧超微材料的光谱特性与上转换发光. 物理学报, doi: 10.7498/aps.58.3812
    [12] 肖思国, 阳效良, 丁建文. Er3+/Yb3+掺杂氟硅铅酸盐微晶玻璃的上转换发光. 物理学报, doi: 10.7498/aps.58.6858
    [13] 肖思国, 阳效良, 丁建文, 颜晓红. 尺寸效应对Er3+掺杂纳米Y2O3的发光特性的影响. 物理学报, doi: 10.7498/aps.58.165
    [14] 吕景文, 刘 双, 肖洪亮, 郑笑秋, 李 岳, 李 峰. Cr3+/Tm3+/Ho3+共掺氟磷酸盐玻璃的制备及性能表征. 物理学报, doi: 10.7498/aps.57.6373
    [15] 锁 钒, 于军胜, 邓 静, 蒋亚东, 王 睿, 汪伟志, 刘天西. 芴-咔唑新型共聚物/PVK掺杂体系的电致发光特性研究. 物理学报, doi: 10.7498/aps.56.6685
    [16] 彭 扬, 李善锋, 张庆瑜, 李毅刚, 徐 雷. Er/Yb共掺体系的光致荧光行为及相关物理过程研究. 物理学报, doi: 10.7498/aps.56.7286
    [17] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, doi: 10.7498/aps.56.4200
    [18] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, doi: 10.7498/aps.56.2951
    [19] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, doi: 10.7498/aps.56.2261
    [20] 符史流, 尹 涛, 丁球科, 赵韦人. Eu3+掺杂的Sr2CeO4发光材料的光致发光研究. 物理学报, doi: 10.7498/aps.55.4940
计量
  • 文章访问数:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-01

/

返回文章
返回