[1] |
Ji Meng, You Yun-Xiang, Han Pan-Pan, Qiu Xiao-Ping, Ma Qiao, Wu Kai-Jian. A wall-modeled hybrid RANS/LES model for flow around circular cylinder with coherent structures in subcritical Reynolds number regions. Acta Physica Sinica,
2024, 73(5): 054701.
doi: 10.7498/aps.73.20231745
|
[2] |
Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei. Preliminary study on Reynolds stress model based on νt-scale equation. Acta Physica Sinica,
2022, 71(16): 164701.
doi: 10.7498/aps.71.20220417
|
[3] |
Chen Fu-Zhou, Cheng Chen, Luo Hong-Gang. Hybrid parallel optimization of density matrix renormalization group method. Acta Physica Sinica,
2019, 68(12): 120202.
doi: 10.7498/aps.68.20190586
|
[4] |
Zhou Xian-Chun, Wang Mei-Ling, Shi Lan-Fang, Zhou Lin-Feng. Diffusion denoising model based on the wavelet and biharmonic equation. Acta Physica Sinica,
2015, 64(6): 064203.
doi: 10.7498/aps.64.064203
|
[5] |
Li Zhi-Hui, Peng Ao-Ping, Fang Fang, Li Si-Xin, Zhang Shun-Yu. Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation. Acta Physica Sinica,
2015, 64(22): 224703.
doi: 10.7498/aps.64.224703
|
[6] |
Mao Bin-Bin, Cheng Chen, Chen Fu-Zhou, Luo Hong-Gang. Phase separation induced by density-spin interaction in one-dimensional extended t-J model. Acta Physica Sinica,
2015, 64(18): 187105.
doi: 10.7498/aps.64.187105
|
[7] |
Jiao Xiao-Yu. The approximate homotopy symmetry reduction for far-field model equation. Acta Physica Sinica,
2011, 60(12): 120201.
doi: 10.7498/aps.60.120201
|
[8] |
Ding Guang-Tao. Hamiltonization of Whittaker equations. Acta Physica Sinica,
2010, 59(12): 8326-8329.
doi: 10.7498/aps.59.8326
|
[9] |
Pan Yu, Wang Kai-Jun, Fang Zhen-Yun, Wang Xian-You, Peng Qing-Jun. Accurately calculate cross section of the n+n→2π0 reaction in the n-n renormalization chain diagram. Acta Physica Sinica,
2008, 57(8): 4817-4825.
doi: 10.7498/aps.57.4817
|
[10] |
Liu Cheng-Zhou, Zhang Chang-Ping. The renormalized energy-momentum tensor and Casimir effect of Dirac field in two-dimensional static spacetime. Acta Physica Sinica,
2007, 56(4): 1928-1937.
doi: 10.7498/aps.56.1928
|
[11] |
Li Qiang, Jiang Zhi-Jin, Xia Hong-Fu. J/ψ anomalous suppression in high-energy heavy-ion collisions. Acta Physica Sinica,
2006, 55(10): 5161-5165.
doi: 10.7498/aps.55.5161
|
[12] |
Wang Hong, Lou Ping, Zhuang Yong-He. Flow equations for solving elementary excitation energy spectrum of the t-J model. Acta Physica Sinica,
2004, 53(2): 577-581.
doi: 10.7498/aps.53.577
|
[13] |
DING JIAN-WEN, YAN XIAO-HONG, FANG XIAN-CHENG, DUAN ZHU-PING. HOPPING CONDUCTIVITY OF NANOSTRUCTURED CHAIN: REAL-SPACE RENORMALIZATION GROUP APPROACH. Acta Physica Sinica,
1999, 48(2): 314-319.
doi: 10.7498/aps.48.314
|
[14] |
ZHU JIAN-YANG. STUDY OF THE TWO-DIMENSIONAL SQUARE LATTICE PERCOLATION MODEL. Acta Physica Sinica,
1993, 42(6): 880-885.
doi: 10.7498/aps.42.880
|
[15] |
Ye Qing;Tang Kun-fa; Hu Jia-zhen. APPLICATION OF AN EXACTDECIMATION TRANSFORMATION WITH MEAN一FIELD APPROXIMATION METHOD TO THE POTTS MODEL. Acta Physica Sinica,
1987, 36(8): 1019-1026.
doi: 10.7498/aps.36.1019
|
[16] |
TANG KUN-FA, HU JIA-ZHEN. A GENERALIZED MIXED SPIN MODEL: A RENORMALISATION GROUP APPROACH. Acta Physica Sinica,
1986, 35(8): 1048-1054.
doi: 10.7498/aps.35.1048
|
[17] |
QIN YUN-WEN. RENORMALIZED QUASI-LINEAR THEORY OF TURBULENCE IN NON-UNIFORM PLASMA——GENERALIZATION OF MISGUICH-BALESCU THEORY. Acta Physica Sinica,
1984, 33(1): 25-36.
doi: 10.7498/aps.33.25
|
[18] |
WANG RONG. ON THE ISOMORPHISM BETWEEN GAUGE GROUPS BEFORE AND AFTER RENORMALIZATION, IN THE PRESENCE OF ABEL SUBGROUPS AND HIGGS FIELDS. Acta Physica Sinica,
1981, 30(6): 731-746.
doi: 10.7498/aps.30.731
|
[19] |
QIU XIAO-MING. RENORMALIZED QUASI LINEAR THEORY OF TURBULENCE IN NON UNIFORM PLASMA (Ⅱ)——RESONANT DIFFUSION IN A TURBULENT PLASMA. Acta Physica Sinica,
1980, 29(9): 1104-1109.
doi: 10.7498/aps.29.1104
|
[20] |
QIU XIAO-MING. RENORMALIZED QUASI-LINEAR THEORY OF TURBULENCE IN NON-UNIFORM PLASMA (Ⅰ)——GENERALIZATION OF MISQUICH-BALESCU THEORY. Acta Physica Sinica,
1980, 29(9): 1093-1103.
doi: 10.7498/aps.29.1093
|