A new method of multiresolution time domain analysis is proposed, which is based on compactly supported Daubechies scaling functions in the electromagnetic scattering of three dimensional objects. The highly linear dispersional properties are investigated. Using the interfaces of MRTD/FDTD technique, the connecting and absorption boundaries are dealt with. Numerical experiments show that, compared with conventional FDTD, this method can reduce cells without sacrificing solution accuracy, and uses less CPU time. Finally, the characteristics of PBG structure are obtained using this scheme.