-
We investigate theoretically the technologically essential Auger recombination lifetime in narrow-gap semiconductor superlattices by means of a completely first-principles formalism, based on accurate energy bands and wave functions provided by the full-potential linearized augmented plane wave scheme. The minority carrier Auger lifetimes are determined by two correlated approaches: (1) direct evaluation in Fermi's golden rule, and (2) indirect evaluation, based on a detailed balance formulation relating Auger recombination and its inverse process, impact ionization, in a unified framework. Lifetimes determined by the direct and indirect methods for n -doped HgTe/CdTe and InAs/InxGa1-xSb superlattices exhibit excellent consistency with experimentally measured values. This justifies the computational formalism as a new sensitive tool in performance optimization of the synthetic narrow-gap semiconductor superlattice systems.
[1] Seidl A, Grling A, Vogl P, Majewski J A, Levy M 1996 Phys. Rev. B 53 3764
[2] Sher A, Schilfgaarde M V, Berding M A, Krishnamurthy S, Chen A B 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G5.1
[3] Wimmer E, Krakauer H, Weinert M, Freeman A J 1981 Phys. Rev. B 24 864
[4] Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561
[5] Franceschetti A, Zunger A 1999 Nature (London) 402 60
[6] Landsberg P T 1991 Recombination in Semiconductors (Cambridge: Cambridge University Press)
[7] Picozzi S S, Asahi R, Geller C B, Continenza A, Freeman A J 2002 Phys. Rev. B 65 113206
[8] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D, Liu P J, Mei L G 2002 Chem. Phys. Lett. 360 436
[9] Arbuznikov A V, Kaupp M 2003 Chem. Phys. Lett. 381 495
[10] Smith C, Abram R A, Burt M G 1985 Superlattice. Microst. 1 119
[11] Flatté M E, Grein C H, hasenberg T C, Anson S A, Jang D J, Olesberg J T 1999 Phys. Rev. B 59 5745
[12] Sano N, Yoshii A 1992 Phys. Rev. B 45 4171
[13] Williams C J, Corbin E, Jaros M, Herbert D C 1998 Physica B 254 240
[14] Grein C H, Young P M, Ehrenreich H 1992 Appl. Phys. Lett. 61 2905
[15] Cappellini G, Sole R D, Reining L, Bechstedt F 1993 Phys. Rev. B 47 9892
[16] Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8178; 8186
[17] Asahi R, Mannstadt W, Freeman A J 1999 Phys. Rev. B 59 7486
[18] Asahi R, Mannstadt W ,Freeman A J 2000 Phys. Rev. B 62 2552
[19] Geller C B, Wolf W, Picozzi S, Continenza A, Asahi R, Mannstadt W, Freeman A J, Wimmer E 2001 Appl. Phys. Lett. 79 368
[20] Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8186
[21] Polkovnikov A S, Zegrya G G 1998 Phys. Rev. B 58 4039
[22] Grein C H, Ehrenreich H 2003 J. Appl. Phys. 93 1075
[23] Haug A 1988 J. Phys. Chem. Solids 49 599
[24] Hahn Y 1997 Phys. Lett. A 231 82
[25] Krishnamurthy S, Sher A, Chen A B 1997 J. Appl. Phys. 82 5540
[26] Metzger W K, Wanlass M W, Ellingson R J, Ahrenkiel R K, Carapella J J 2001 Appl. Phys. Lett. 79 3272
[27] Shin S H, Arias J M, Zandian M, Pasko J G, Bajaj J, DeWames R E 1992 Appl. Phys. Lett. 61 1196
[28] Qiu Y M, He L, Li J, Yuan S X 1993 Appl. Phys. Lett. 62 1134
[29] Grein C H, Jung H, Singh R, Flatté M E 2005 J. Electron. Mater. 34 905
[30] Reisinger A R, Harris K A, Myers T H, Yanka R W, Mohnkern L M, Hoffman C A 1992 Appl. Phys. Lett. 61 699
[31] Youngdale E R, Meyer J R, Hoffman C A, Bartoll F J, Grein C H, Young P M, Ehrenreich H, Miles R H, Chow D H 1994 Appl. Phys. Lett. 64 3160
[32] Grein C H, Young P M, Flatté M E, Ehrenreich H 1995 J. Appl. Phys. 78 7143
[33] Roosbroeck W V, Shockley W 1954 Phys. Rev. 94 1558
-
[1] Seidl A, Grling A, Vogl P, Majewski J A, Levy M 1996 Phys. Rev. B 53 3764
[2] Sher A, Schilfgaarde M V, Berding M A, Krishnamurthy S, Chen A B 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G5.1
[3] Wimmer E, Krakauer H, Weinert M, Freeman A J 1981 Phys. Rev. B 24 864
[4] Jansen H J F, Freeman A J 1984 Phys. Rev. B 30 561
[5] Franceschetti A, Zunger A 1999 Nature (London) 402 60
[6] Landsberg P T 1991 Recombination in Semiconductors (Cambridge: Cambridge University Press)
[7] Picozzi S S, Asahi R, Geller C B, Continenza A, Freeman A J 2002 Phys. Rev. B 65 113206
[8] Zhao M W, Xia Y Y, Ma Y C, Ying M J, Liu X D, Liu P J, Mei L G 2002 Chem. Phys. Lett. 360 436
[9] Arbuznikov A V, Kaupp M 2003 Chem. Phys. Lett. 381 495
[10] Smith C, Abram R A, Burt M G 1985 Superlattice. Microst. 1 119
[11] Flatté M E, Grein C H, hasenberg T C, Anson S A, Jang D J, Olesberg J T 1999 Phys. Rev. B 59 5745
[12] Sano N, Yoshii A 1992 Phys. Rev. B 45 4171
[13] Williams C J, Corbin E, Jaros M, Herbert D C 1998 Physica B 254 240
[14] Grein C H, Young P M, Ehrenreich H 1992 Appl. Phys. Lett. 61 2905
[15] Cappellini G, Sole R D, Reining L, Bechstedt F 1993 Phys. Rev. B 47 9892
[16] Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8178; 8186
[17] Asahi R, Mannstadt W, Freeman A J 1999 Phys. Rev. B 59 7486
[18] Asahi R, Mannstadt W ,Freeman A J 2000 Phys. Rev. B 62 2552
[19] Geller C B, Wolf W, Picozzi S, Continenza A, Asahi R, Mannstadt W, Freeman A J, Wimmer E 2001 Appl. Phys. Lett. 79 368
[20] Harrison D, Abram R A, Brand S 1999 J. Appl. Phys. 85 8186
[21] Polkovnikov A S, Zegrya G G 1998 Phys. Rev. B 58 4039
[22] Grein C H, Ehrenreich H 2003 J. Appl. Phys. 93 1075
[23] Haug A 1988 J. Phys. Chem. Solids 49 599
[24] Hahn Y 1997 Phys. Lett. A 231 82
[25] Krishnamurthy S, Sher A, Chen A B 1997 J. Appl. Phys. 82 5540
[26] Metzger W K, Wanlass M W, Ellingson R J, Ahrenkiel R K, Carapella J J 2001 Appl. Phys. Lett. 79 3272
[27] Shin S H, Arias J M, Zandian M, Pasko J G, Bajaj J, DeWames R E 1992 Appl. Phys. Lett. 61 1196
[28] Qiu Y M, He L, Li J, Yuan S X 1993 Appl. Phys. Lett. 62 1134
[29] Grein C H, Jung H, Singh R, Flatté M E 2005 J. Electron. Mater. 34 905
[30] Reisinger A R, Harris K A, Myers T H, Yanka R W, Mohnkern L M, Hoffman C A 1992 Appl. Phys. Lett. 61 699
[31] Youngdale E R, Meyer J R, Hoffman C A, Bartoll F J, Grein C H, Young P M, Ehrenreich H, Miles R H, Chow D H 1994 Appl. Phys. Lett. 64 3160
[32] Grein C H, Young P M, Flatté M E, Ehrenreich H 1995 J. Appl. Phys. 78 7143
[33] Roosbroeck W V, Shockley W 1954 Phys. Rev. 94 1558
Catalog
Metrics
- Abstract views: 9900
- PDF Downloads: 919
- Cited By: 0