Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles calculation of diamond/Al interface properties and study of interface reaction

Zhu Ping Zhang Qiang Gou Hua-Song Wang Ping-Ping Shao Pu-Zhen Kobayashi Equo Wu Gao-Hui

Citation:

First-principles calculation of diamond/Al interface properties and study of interface reaction

Zhu Ping, Zhang Qiang, Gou Hua-Song, Wang Ping-Ping, Shao Pu-Zhen, Kobayashi Equo, Wu Gao-Hui
PDF
HTML
Get Citation
  • First-principles calculation and experimental methods are used to study the interfacial properties and reaction of diamond/Al composites. Based on the first-principles method, the interfacial adhesion work (Wad), electronic structure and charge transfer of diamond/Al models are calculated systematically. The results show that the adhesion work of diamond(100)/Al(111) is 41% higher than that of diamond(111)/Al(111), therefore, the interface bonding of diamond(100)/Al(111) interface is stronger. According to the analysis of the electronic structure, there are more charges transferring at the diamond(100)/Al(111) interface, and the high charge density is distributed on the side of C atoms. The redistribution of charges at the interface is conducive to the formation of Al—C bond, so that the tendency of forming Al—C bonds is greater. The introduction of Al—C bond can promote the formation of C—C bond at the diamond(100)/Al(111) interface and improve the interfacial adhesion work. In addition, the diamond/Al composites are fabricated by vacuum gas pressure infiltration, and multi-scale characterization of the interface structure of diamond/Al composites is carried out. The interfacial debonding occurs mainly on the diamond {111}. Meanwhile, the interface product Al4C3 is easier to form on the diamond {100}. The experimental phenomenon is consistent with the calculated results. Moreover, the influence of the interfacial reaction on the properties and stability of diamond/Al composites are further discussed through heat-moisture treatment. The study finds that the performance degradation in heat-moisture environment is related mainly to the hydrolysis of the interface product Al4C3. After 60 days’ heat-moisture, the thermal conductivity of the diamond/Al composites decreases by 29.9%, and the bending strength is reduced by 40.1%. The large attenuation of performance is not conducive to the stability of composites in complex environments. Therefore, inhibiting the formation of Al4C3 and improving interfacial selectivity are of great importance in developing the performance and stability of diamond/Al composites. The research in this paper not only lays a theoretical foundation for the first-principles calculation of the interface properties of diamond/metal, but also possesses important guidance significance in designing the diamond/metal composites.
      Corresponding author: Zhang Qiang, zhang_tsiang@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071117, 51771063).
    [1]

    Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar

    [2]

    Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar

    [3]

    Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar

    [4]

    Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar

    [5]

    Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar

    [6]

    Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar

    [7]

    Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar

    [8]

    Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar

    [9]

    Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar

    [10]

    Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar

    [11]

    Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar

    [12]

    Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar

    [13]

    Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar

    [14]

    Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar

    [15]

    Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar

    [16]

    张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 物理学报 68 207302Google Scholar

    Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar

    [17]

    董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 物理学报 65 068201Google Scholar

    Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar

    [18]

    Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar

    [19]

    Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar

    [20]

    Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar

    [21]

    Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar

    [22]

    Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar

    [23]

    吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 物理学报 66 088102Google Scholar

    Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar

    [24]

    Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar

    [28]

    Riley D P 1944 Nature 153 587Google Scholar

    [29]

    Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar

    [30]

    Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar

    [31]

    Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar

    [32]

    Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar

    [33]

    Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar

  • 图 1  (a), (b) 金刚石(111)/铝(111)主、俯视图; (c), (d) 金刚石(100)/铝(111)主、俯视图

    Figure 1.  (a), (b) Front and top view of model diamond (111)/Al(111); (c), (d) front and top view of model diamond(100)/Al(111).

    图 2  (a), (b) 金刚石(111)/铝(111); (c), (d) 金刚石(100)/铝(111)差分电荷密度图

    Figure 2.  Differential charge density image of model: (a), (b) Diamond (111)/Al(111); (c), (d) diamond(100)/Al(111).

    图 3  金刚石/铝界面分波态密度 (a) 金刚石(111)/铝(111); (b) 金刚石(100)/铝(111)

    Figure 3.  PDOS of diamond/Al interface: (a) Diamond(111)/Al(111); (b) diamond(100)/Al(111).

    图 4  金刚石/铝界面模型结构优化后局部图 (a) 金刚石(111)/铝(111); (b) 金刚石(100)/铝(111)

    Figure 4.  Partial image of optimized structure of diamond/Al interface: (a) Diamond(111)/Al(111); (b) diamond(100)/Al(111).

    图 5  C原子在Al(111)表面吸附位置确定 (a) Al(111)表面模型; (b) C原子在Al(111)表面吸附位置俯视图; (c) Al4C3模型局部图; (d) 优化的C原子在Al(111)表面的位置

    Figure 5.  Determination of adsorption position of C atom on Al (111) surface: (a) Al (111) surface model; (b) top view of the adsorption position of C atom on Al (111) surface; (c) the local map of Al4C3 model; (d) the position of the optimized C atom on Al (111) surface.

    图 6  修正的金刚石(100)/铝(111)模型示意图 (a), (c) 优化前; (b), (d) 优化后

    Figure 6.  Schematic diagram of diamond(100)/Al(111) modified model: (a), (c) Before optimization; (b), (d) after optimization.

    图 7  修正的金刚石(100)/铝(111)模型差分电荷密度分析 (a) 结构优化后模型俯视图; (b) (a)中①截面差分电荷密度图; (c) (a)中②截面差分电荷密度图; (d) (b)中虚线部分的差分电荷密度图

    Figure 7.  Differential charge density analysis of diamond(100)/Al(111) modified model: (a) Top view of the model after structure optimization; (b) cross section differential charge density diagram of ① in Fig. (a); (c) cross section differential charge density diagram of ② in Fig. (a); (d) the differential charge density diagram of the dotted line in Fig. (b).

    图 8  修正的金刚石(100)/铝(111)模型的分波态密度

    Figure 8.  PDOS of diamond (100)/Al(111) modified model.

    图 9  复合材料中提取金刚石的SEM形貌 (a) 提取金刚石颗粒整体形貌; (b) 提取金刚石颗粒局部形貌; (c) 单个金刚石颗粒形貌; (d) {100}晶面上的Al4C3蚀坑

    Figure 9.  SEM morphology of diamond extracted from diamond/Al composites: (a) Overall morphology of extracted diamond particles; (b) local morphology of extracted diamond particles; (c) morphology of single diamond particle; (d) Al4C3 pits on {100} plane.

    图 10  复合材料中金刚石原子力显微镜照片 (a) 金刚石{111}面; (b) 金刚石{111}面 10 μm × 10 μm面积; (c) 金刚石{100}面; (d) 金刚石{100}面10 μm × 10 μm面积

    Figure 10.  AFM photographs of diamond surface in composites: (a) Diamond {111}; (b) diamond {111} with 10 μm × 10 μm area; (c) diamond {100}; (d) diamond {100} with 10 μm × 10 μm area.

    图 11  复合材料界面反应表征 (a) 金刚石{100}/铝界面处Al4C3形貌; (b) 金刚石/铝界面处的位相关系

    Figure 11.  Characterization of interface reaction of composites: (a) Al4C3 morphology at the interface of diamond{100}/Al; (b) phase relationship at diamond/Al interface.

    图 12  湿热处理后金刚石/铝复合材料归一化热导率变化

    Figure 12.  The variation of normalized thermal conductivity of diamond/Al composites after heat-moisture treatment.

    图 13  湿热处理60 d前后金刚石/铝复合材料断口形貌 (a), (b), (c) 湿热前; (d), (e), (f) 湿热后

    Figure 13.  The fracture morphology of diamond/Al composites: (a), (b), (c) before and (d), (e), (f) after 60 days heat-moisture treatment

    表 1  金刚石/铝界面原子轨道布居分析

    Table 1.  Atomic orbital population analysis of diamond/Al interface.

    Interface modelPositionspTotalCharge
    Diamond(111)/Al(111)Al11.031.612.640.36
    Al21.031.612.640.36
    Al31.031.612.640.36
    C11.183.074.25–0.25
    Diamond(100)/Al(111)C21.183.094.26–0.26
    Al10.881.732.610.39
    Al20.891.722.600.40
    Al30.881.732.610.39
    Al40.891.722.610.39
    C11.333.104.430.43
    C21.333.104.430.43
    DownLoad: CSV

    表 2  不同覆盖率及不同吸附位置时C原子在Al(111)表面的吸附能 (eV·atom–1)

    Table 2.  Adsorption energy of C atom on Al (111) surface with different coverage and adsorption position (eV·atom–1).

    Coverage/ML
    0.254.127.967.63
    0.506.898.628.21
    1.004.277.415.76
    DownLoad: CSV
  • [1]

    Edtmaier C, Segl J, Koos R, Schöbel M, Feldbaumer C 2020 Diamond Relat. Mater. 106 107842Google Scholar

    [2]

    Guo B S, Chen B, Zhang X M, Cen X, Wang X H, Song M, Ni S, Yi J H, Shen T, Du Y 2018 Carbon 135 224Google Scholar

    [3]

    Lu Y F, Wang X T, Zhang Y, Wang J G, Kim M J, Zhang H L 2018 J. Compos. Mater. 52 2709Google Scholar

    [4]

    Li N, Wang L H, Dai J J, Wang X T, Wang J G, Kim M J, Zhang H L 2019 Diamond Relat. Mater. 100 107565Google Scholar

    [5]

    Chen G Q, Yang W S, Xin L, Wang P P, Liu S F, Qiao J, Hu F J, Zhang Q, Wu G H 2018 J. Alloys Compd. 735 777Google Scholar

    [6]

    Edtmaier C, Segl J, Rosenberg E, Liedl G, Pospichal R, Steiger-Thirsfeld A 2018 J. Mater. Sci. 53 15514Google Scholar

    [7]

    Tan Z Q, Li Z Q, Xiong D B, Fan G L, Ji G, Zhang D 2014 Mater. Des. 55 257Google Scholar

    [8]

    Che Z F, Wang Q X, Wang L H, Li J W, Zhang H L, Zhang Y, Wang X T, Wang J G, Kim M J 2017 Composites Part B 113 285Google Scholar

    [9]

    Ji G, Tan Z Q, Li X P, Li Z Q, Kruth J P 2018 Mater. Sci. Forum 941 2184Google Scholar

    [10]

    Guo C Y, He X B, Ren S B, Qu X H 2016 J. Alloys Compd. 664 777Google Scholar

    [11]

    Tan Z Q, Ji G, Addad A, Li Z Q, Silvain J F, Zhang D 2016 Composites Part A 91 9Google Scholar

    [12]

    Monje I E, Louis E, Molina J M 2013 Composites Part A 48 9Google Scholar

    [13]

    Wu J H, Zhang H L, Zhang Y, Li J W, Wang X T 2012 Mater. Des. 39 87Google Scholar

    [14]

    Monje I E, Louis E, Molina J M 2016 Scr. Mater. 115 159Google Scholar

    [15]

    Li X J, Yang W L, Sang J Q, Zhu J J, Fu L C, Li DY, Zhou L P 2020 J. Alloys Compd. 846 156258Google Scholar

    [16]

    张恒, 黄燕, 石旺舟, 周孝好, 陈效双 2019 物理学报 68 207302Google Scholar

    Zhang H, Huang Y, Shi W Z, Zhou X H, Chen X S 2019 Acta Phys. Sin. 68 207302Google Scholar

    [17]

    董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献 2016 物理学报 65 068201Google Scholar

    Dong S, Zhang Y X, Zhang X L, Xu X P, Mao J J, Li D L, Chen Z M, Ma K, Fan Z Q, Wei D D, Yang Z X 2016 Acta Phys. Sin. 65 068201Google Scholar

    [18]

    Zhao Z Y, Zhao W J, Bai P K, Wu L Y, Huo P C 2019 Mater. Lett. 255 126559Google Scholar

    [19]

    Chen L, Chen S T, Hou Y 2019 Carbon 148 249Google Scholar

    [20]

    Xie H N, Chen Y T, Zhang T B, Zhao N Q, Shi C S, He C N, Liu E Z 2020 Appl. Surf. Sci. 527 146817Google Scholar

    [21]

    Fathzadeh M, Fahrvandi H, Nadimi E 2020 Nanotechnology 31 025710Google Scholar

    [22]

    Qi Y, Hector L G 2003 Phys. Rev. B 68 201403Google Scholar

    [23]

    吴孔平, 孙昌, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇 2017 物理学报 66 088102Google Scholar

    Wu K P, Sun C X, Ma W F, Wang J, Wei W, Cai J, Chen C Z, Ren B, Sang L W, Liao M Y 2017 Acta Phys. Sin. 66 088102Google Scholar

    [24]

    Vanderbilt, David 1990 Phys. Rev. B 41 7892Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Monachon C, Schusteritsch G, Kaxiras E, Weber L 2014 J. Appl. Phys. 115 123509Google Scholar

    [28]

    Riley D P 1944 Nature 153 587Google Scholar

    [29]

    Liu L M, Wang S Q, Ye H Q 2004 Surf. Sci. 550 46Google Scholar

    [30]

    Xu X Y, Wang H Y, Zha M, Wang C, Yang Z Z, Jiang Q C 2018 Appl. Surf. Sci. 437 103Google Scholar

    [31]

    Liu R, Yin X M, Feng K X, Xu R 2018 Comput. Mater. Sci. 149 373Google Scholar

    [32]

    Che Z F, Zhang Y, Li J W, Zhang H L, Wang X T, Sun C, Wang J G, Kim M J 2016 J. Alloys Compd. 657 81Google Scholar

    [33]

    Monje I E, Louis E, Molina J M 2016 J. Mater. Sci. 51 8027Google Scholar

  • [1] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [5] Wang Ying, Li Yong, Li Zong-Bao. First-principle studies of the electronic structures and optical properties of diamond crystal co-doped with B and N. Acta Physica Sinica, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [6] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [7] Zeng Xiao-Bo, Zhu Xiao-Ling, Li De-Hua, Chen Zhong-Jun, Ai Ying-Wei. First-principles calculations of the mechanical properties of IrB and IrB2. Acta Physica Sinica, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [8] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [10] Fan Kai-Min, Yang Li, Sun Qing-Qiang, Dai Yun-Ya, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao. First-principles study on elastic properties of hexagonal phase ErAx (A=H, He). Acta Physica Sinica, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [11] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] Meng Fan-Shun, Zhao Xing, Li Jiu-Hui. The first-principles study on properties of B-doped at interstitial site of Cu∑5 grain boundary. Acta Physica Sinica, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [13] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [14] Liu Yuan, Yao Jie, Chen Chi, Miao Ling, Jiang Jian-Jun. First-principles study on the piezoelectric properties of hydrogen modified graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [15] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [16] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [17] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [18] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [19] Huang Yun-Xia, Cao Quan-Xi, Li Zhi-Min, Li Gui-Fang, Wang Yu-Peng, Wei Yun-Ge. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physica Sinica, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
Metrics
  • Abstract views:  9239
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2021
  • Accepted Date:  28 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回