Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of two-dimensional many-particle hardcore bosons by using the quantum Monte Carlo method

Xu Ying Li Jin-Bin

Citation:

Simulation of two-dimensional many-particle hardcore bosons by using the quantum Monte Carlo method

Xu Ying, Li Jin-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the stochastic series expansion quantum Monte Carlo method is employed to investigate the thermodynamic properties of hardcore Bose-Hubbard model in two-dimensional space. The two-dimensional hardcore Bose-Hubbard model can be mapped into the two-dimensional antiferromagnetic quasi-Heisenberg model under transform of bosonic operators. There is an additional term which is proportional to the total number of sites compared with real Heisenberg model and it is difficult for simulation. Using a nonlocal operator-loop update, it allows one to simulate thousands of sites. Our simulation results show that, first, energy decreases with the increase of density of particles in a range from 0 to 0.5, and finally approaches to a fixed value. Moreover, with the size of square lattice increasing, energy also increases. Second, when we fix the system size, energy and magnetization increase with temperature, but not with of chemical potential. When we increase the system size, energy increases, while, the magnetization decreases. Third, specific heat is independent of chemical potential, but it dramatically increases with temperature and approaches to a peak, then decreases slowly. According to Landau theory of superfluidity, the tends of curve for energy and specific heat fit the research of He II in the Landau two-fluid model. Fourth, different square lattice linear system sizes have a little influence on tiny differences to the reciprocal of uniform susceptibility. There are small fluctuations in a range from 0 to 0.5(J/kB), where J is the coupling energy, kB is the Boltzmann constant, but the reciprocal of uniform susceptibility increases with temperature increasing in a range from 0.5 to 2(J/kB). The tends of curve are similar to those of Kondo effect.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11104143).
    [1]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [2]

    Anderson M H, Ensher J R, Mathews M R, Weiman C E, Cornell E A 1995 Science 269 198

    [3]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [4]

    Greiner M, Mandel O, Esslinger T, HaÉnsch T W, Bloch I 2002 Nature 415 39

    [5]

    Pollet L, Prokof'ev N V, Svistunov B V, Troyer M 2009 Phys. Rev. Lett. 103 140402

    [6]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547

    [7]

    Crepin F, Laflorencie N, Roux G, Simon P 2011 Phys. Rev. B 84 054517

    [8]

    Laflorencie N, Mila F 2011 Phys. Rev. Lett. 107 037203

    [9]

    Jordan J, Orús R, Vidal G 2009 Phys. Rev. B 79 174515

    [10]

    Hen I, Rigol M 2009 Phys. Rev. B 80 134508

    [11]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546

    [12]

    Beijing University Physics Department “Quantum Statistical Physics” 1987 Quantum Statistical Physics (Beijing: Beijing University Press) pp232--240 (in Chinese) [北京大学物理系量子统计物理学angle编写组 1987 量子统计物理学 (北京: 北京大学出版社) 第232---240页]

    [13]

    Landau D P, Binder K 2008 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (Beijing: BookWorld Publications) pp277--312

    [14]

    Zhao X W, Cheng X L, Zhang H 2010 Acta Phys. Sin. 59 482 (in Chinese) [赵杏文, 程新路, 张红 2010 物理学报 59 482]

    [15]

    Zhou L, Liu Z J, Yan W B, Mu Z J 2011 Chin. Phys. B 20 074205

    [16]

    Dorneich A, Troyer M 2001 Phys. Rev. E 64 066701

    [17]

    Sylijuasen O F, Sandvik A W 2002 Phys. Rev. E 66 046701

    [18]

    Zyubin M V, Kashurnikov V A 2004 Phys. Rev. E 69 036701

    [19]

    Kawashima N, Gubernatis J E, Evertz H G 1994 Phys. Rev. B 50 136

    [20]

    Alet F, Wessel S, Troyer M 2005 Phys. Rev. E 71 036706

    [21]

    Zhou Q, Li J B 2011 Journal of Guangxi University (Nat. Sci. Ed.) 36 334 (in Chinese) [周琼, 李晋斌 2011 广西大学学报 (自然科学版) 36 334]

    [22]

    Wang Z C 2005 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) pp248--286 (in Chinese) [汪志诚 2005 热力学统计物理 (北京: 高等教育出版社) 第 248---286页]

    [23]

    Li Z Z 1985 Solid State Theory (Beijing: Higher Education Press) pp390--402 (in Chinese) [李中正1985固体理论 (北京: 高等教育出版社) 第390---402页]

    [24]

    Bernardet K, Batrouni G G, Meunier J L, Schmid G, Troyer M, Dorneich A 2002 Phys. Rev. B 65 104519

    [25]

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) pp381--417 (in Chinese) [冯端, 金国钧 2003 凝聚态物理学(上卷) (北京:高等教育出版社) 第 387---417页]

    [26]

    Jiang Z T 2010 Chin. Phys. B 19 077307

  • [1]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [2]

    Anderson M H, Ensher J R, Mathews M R, Weiman C E, Cornell E A 1995 Science 269 198

    [3]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [4]

    Greiner M, Mandel O, Esslinger T, HaÉnsch T W, Bloch I 2002 Nature 415 39

    [5]

    Pollet L, Prokof'ev N V, Svistunov B V, Troyer M 2009 Phys. Rev. Lett. 103 140402

    [6]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547

    [7]

    Crepin F, Laflorencie N, Roux G, Simon P 2011 Phys. Rev. B 84 054517

    [8]

    Laflorencie N, Mila F 2011 Phys. Rev. Lett. 107 037203

    [9]

    Jordan J, Orús R, Vidal G 2009 Phys. Rev. B 79 174515

    [10]

    Hen I, Rigol M 2009 Phys. Rev. B 80 134508

    [11]

    Fisher M P A, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546

    [12]

    Beijing University Physics Department “Quantum Statistical Physics” 1987 Quantum Statistical Physics (Beijing: Beijing University Press) pp232--240 (in Chinese) [北京大学物理系量子统计物理学angle编写组 1987 量子统计物理学 (北京: 北京大学出版社) 第232---240页]

    [13]

    Landau D P, Binder K 2008 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (Beijing: BookWorld Publications) pp277--312

    [14]

    Zhao X W, Cheng X L, Zhang H 2010 Acta Phys. Sin. 59 482 (in Chinese) [赵杏文, 程新路, 张红 2010 物理学报 59 482]

    [15]

    Zhou L, Liu Z J, Yan W B, Mu Z J 2011 Chin. Phys. B 20 074205

    [16]

    Dorneich A, Troyer M 2001 Phys. Rev. E 64 066701

    [17]

    Sylijuasen O F, Sandvik A W 2002 Phys. Rev. E 66 046701

    [18]

    Zyubin M V, Kashurnikov V A 2004 Phys. Rev. E 69 036701

    [19]

    Kawashima N, Gubernatis J E, Evertz H G 1994 Phys. Rev. B 50 136

    [20]

    Alet F, Wessel S, Troyer M 2005 Phys. Rev. E 71 036706

    [21]

    Zhou Q, Li J B 2011 Journal of Guangxi University (Nat. Sci. Ed.) 36 334 (in Chinese) [周琼, 李晋斌 2011 广西大学学报 (自然科学版) 36 334]

    [22]

    Wang Z C 2005 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) pp248--286 (in Chinese) [汪志诚 2005 热力学统计物理 (北京: 高等教育出版社) 第 248---286页]

    [23]

    Li Z Z 1985 Solid State Theory (Beijing: Higher Education Press) pp390--402 (in Chinese) [李中正1985固体理论 (北京: 高等教育出版社) 第390---402页]

    [24]

    Bernardet K, Batrouni G G, Meunier J L, Schmid G, Troyer M, Dorneich A 2002 Phys. Rev. B 65 104519

    [25]

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) pp381--417 (in Chinese) [冯端, 金国钧 2003 凝聚态物理学(上卷) (北京:高等教育出版社) 第 387---417页]

    [26]

    Jiang Z T 2010 Chin. Phys. B 19 077307

  • [1] Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming. Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain. Acta Physica Sinica, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [2] Li Yan. Effects of long-range inter-particle interactions and isolated defect on quantum walks of two hard-core bosons in one-dimensional lattices. Acta Physica Sinica, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [3] Li Feng-Hua, Wang Han-Zhuo. Geo-acoustic inversion using polynomial chaos expansion. Acta Physica Sinica, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [4] Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity. Acta Physica Sinica, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [5] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [6] Fang Jie, Han Dong-Mei, Liu Hui, Liu Hao-Di, Zheng Tai-Yu. Majorana representation for the nonlinear two-mode boson system. Acta Physica Sinica, 2017, 66(16): 160302. doi: 10.7498/aps.66.160302
    [7] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [8] Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang. Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength. Acta Physica Sinica, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [9] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [10] Quan Ya-Min, Liu Da-Yong, Zou Liang-Jian. Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model. Acta Physica Sinica, 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [11] Chen Xue-Wen, Fang Zhen-Yun, Zhang Jia-Wei, Zhong Tao, Tu Wei-Xing. Renormalization of two neutral mixing-loop chain propagators in standard model and its e+e-→μ+μ- cross section. Acta Physica Sinica, 2011, 60(2): 021101. doi: 10.7498/aps.60.021101
    [12] Li Bo, Wang Yan-Shen. The q-boson hopping model with integrable open boundary condition. Acta Physica Sinica, 2007, 56(3): 1260-1265. doi: 10.7498/aps.56.1260
    [13] LIU WEN-SEN, MA GUI-RONG, ZHANG JIU-AN, LIANG JIU-QING. SQUEEZED BOSON PAIR NUMBER STATES IN QUANTUM BOSE FLUID. Acta Physica Sinica, 1997, 46(9): 1699-1709. doi: 10.7498/aps.46.1699
    [14] REN ZHONG-ZHOU, XU GONG-OU. DISCUSSION ON THE SOLUTIONS IN DYSON BOSON REPRESENTATION. Acta Physica Sinica, 1989, 38(10): 1673-1678. doi: 10.7498/aps.38.1673
    [15] HUANG WU-QUN, CHEN TIAN-LUN, XIN YUN-WEI. MONTE CARLO RENORMALIZATION GROUP STUDY OF THREE-STATE AND FOUR-STATE POTTS MODEL ON TWO-DIMENSIONAL RANDOM TRIANGLE LATTICE. Acta Physica Sinica, 1989, 38(4): 659-664. doi: 10.7498/aps.38.659
    [16] YANG KUO-SHEN, LU TAN, LO LIAU-FU. AN INTERMEDIATE BOSON THEORY (Ⅱ)——THE NONLEPTONIC DECAYS OF HYPERONS. Acta Physica Sinica, 1966, 22(9): 1032-1037. doi: 10.7498/aps.22.1032
    [17] YANG KUO-SHEN, LO LIAU-FU, LU TAN. AN INTERMEDIATE BOSON THEORY (Ⅰ)——BASIC HYPOTHESES AND SYMMETRIES. Acta Physica Sinica, 1966, 22(9): 1027-1031. doi: 10.7498/aps.22.1027
    [18] ZHU XI-WEN, HE XIANG-SHENG, ZENG XI-ZHI. INTERMEDIATE VECTOR BOSON EFFECTS IN HIGH-ENERGY νN "ELASTIC" REACTIONS. Acta Physica Sinica, 1966, 22(8): 945-951. doi: 10.7498/aps.22.945
    [19] . Acta Physica Sinica, 1964, 20(12): 1292-1294. doi: 10.7498/aps.20.1292
    [20] . Acta Physica Sinica, 1964, 20(9): 928-930. doi: 10.7498/aps.20.928
Metrics
  • Abstract views:  8160
  • PDF Downloads:  864
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2011
  • Accepted Date:  05 June 2012
  • Published Online:  05 June 2012

/

返回文章
返回