Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Majorana representation for the nonlinear two-mode boson system

Fang Jie Han Dong-Mei Liu Hui Liu Hao-Di Zheng Tai-Yu

Citation:

Majorana representation for the nonlinear two-mode boson system

Fang Jie, Han Dong-Mei, Liu Hui, Liu Hao-Di, Zheng Tai-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By presenting the quantum evolution with the trajectories of points on the Bloch sphere, the Majorana representation provides an intuitive way to study a high dimensional quantum evolution. In this work, we study the dynamical evolution of the nonlinear two-mode boson system both in the mean-field model by one point on the Bloch sphere and the second-quantized model by the Majorana points, respectively. It is shown that the evolution of the state in the mean-field model and the self-trapping effect can be perfectly characterized by the motion of the point, while the quantum evolution in the second-quantized model can be expressed by an elegant formula of the Majorana points. We find that the motions of states in the two models are the same in linear case. In the nonlinear case, the contribution of the boson interactions to the formula of Majorana points in the second quantized model can be decomposed into two parts:one is the single point part which equals to the nonlinear part of the equation in mean-field model under lager boson number limit; the other one is related to the correlations between the Majorana points which cannot be found in the equation of the point in mean-field model. This means that, the quantum fluctuation which is neglected in the mean-field model can be represented by these correlations. To illustrate our results and shed more light on these two different models, we discussed the quantum state evolution and corresponding self-trapping phenomenon with different boson numbers and boson interacting strength by using the fidelity between the states of the two models and the correlation between the Majoranapoints and the single points in the mean-field model. The result show that the dynamics evolution of the two models are quite different with small boson numbers, since the correlation between the Majorana stars cannot be neglected. However, the second-quantized evolution and the mean-field evolution still vary in both the fidelity population difference between the two boson modes and the fidelity of the states in the two models. The difference between the continuous changes of the second quantized evolution with the boson interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect is also discussed. These results can help us to investigate how to include the quantum fluctuation into the mean-field model and find a method beyond the mean field approach.
      Corresponding author: Liu Hao-Di, liuhd100@nenu.edu.cn;zhengty@nenu.edu.cn ; Zheng Tai-Yu, liuhd100@nenu.edu.cn;zhengty@nenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11405008,11175044) and the Plan for Scientific and Technological Development of Jilin Province,China (Grant No.20160520173JH).
    [1]

    Bloch F, Rabi I I 1945 Rev. Mod. Phys. 17 237

    [2]

    Majorana E 1932 Nuovo Cim. 9 43

    [3]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [4]

    Zhu Q, Wu B 2015 Chin. Phys. B 24 050507

    [5]

    Lian B, Ho T L, Zhai H 2012 Phys. Rev. A 85 051606

    [6]

    Cui X, Lian B, Ho T L, Lev B L, Zhai H 2013 Phys. Rev. A 88 011601

    [7]

    Devi A R U, Sudha, Rajagopal A K 2012 Quantum Inf. Process. 11 685

    [8]

    Bruno P 2012 Phys. Rev. Lett. 108 240402

    [9]

    Liu H D, Fu L B 2014 Phys. Rev. Lett. 113 240403

    [10]

    Liu H D, Fu L B 2016 Phys. Rev. A 94 022123

    [11]

    Tamate S, Ogawa K, Kitano M 2011 Phys. Rev. A 84 052114

    [12]

    Aulbach M, Markham D, Murao M 2010 New J. Phys. 12 073025

    [13]

    Martin J, Giraud O, Braun P A, Braun D, Bastin T 2010 Phys. Rev. A 81 062347

    [14]

    Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L, Solano E 2009 Phys. Rev. Lett. 103 070503

    [15]

    Ribeiro P, Mosseri R 2011 Phys. Rev. Lett. 106 180502

    [16]

    Ganczarek W, Kuś M,Życzkowski K 2012 Phys. Rev. A 85 032314

    [17]

    Wang Z, Markham D 2012 Phys. Rev. Lett. 108 210407

    [18]

    Wang Z, Markham D 2013 Phys. Rev. A 87 12104

    [19]

    Cao H 2013 Acta Phys. Sin. 62 030303 (in Chinese)[曹辉2013物理学报62 030303]

    [20]

    Barnett R, Podolsky D, Refael G 2009 Phys. Rev. B 80 024420

    [21]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253

    [22]

    Yang C, Guo H, Fu L B, Chen S 2015 Phys. Rev. B 91 125132

    [23]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [24]

    Micheli A, Jaksch D, Cirac J I, Zoller P 2003 Phys. Rev. A 67 013607

    [25]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [26]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [27]

    Wu B, Niu Q, New J 2012 Physics 5 104

    [28]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [29]

    Chen Z D, Liang J Q, Shen S Q, Xie W F 2004 Phys. Rev. A 69 23611

    [30]

    Tonel A P, Links J, Foerster A 2005 J. Phys. A 38 1235

    [31]

    Fu L, Liu J 2006 Phys. Rev. A 74 063614

    [32]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese)[马云, 傅立斌, 杨志安, 刘杰2006物理学报55 5623]

    [33]

    Gong J B, Morales-Molina L, Hänggi P 2009 Phys. Rev. Lett. 103 133002

    [34]

    Pang M M, Hao Y 2016 Chin. Phys. B 25 40501

    [35]

    Wang G F, Fu L B, Liu L 2006 Phys. Rev. A 73 13619

    [36]

    Cirac J I, Lewenstein M, Mo K, Zoller P 1998 Phys. Rev. A 57 1208

    [37]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [38]

    Li S C, Duan W S 2009 Acta Phys. Sin. 58 4396 (in Chinese)[栗生长, 段文山2009物理学报58 4396]

  • [1]

    Bloch F, Rabi I I 1945 Rev. Mod. Phys. 17 237

    [2]

    Majorana E 1932 Nuovo Cim. 9 43

    [3]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [4]

    Zhu Q, Wu B 2015 Chin. Phys. B 24 050507

    [5]

    Lian B, Ho T L, Zhai H 2012 Phys. Rev. A 85 051606

    [6]

    Cui X, Lian B, Ho T L, Lev B L, Zhai H 2013 Phys. Rev. A 88 011601

    [7]

    Devi A R U, Sudha, Rajagopal A K 2012 Quantum Inf. Process. 11 685

    [8]

    Bruno P 2012 Phys. Rev. Lett. 108 240402

    [9]

    Liu H D, Fu L B 2014 Phys. Rev. Lett. 113 240403

    [10]

    Liu H D, Fu L B 2016 Phys. Rev. A 94 022123

    [11]

    Tamate S, Ogawa K, Kitano M 2011 Phys. Rev. A 84 052114

    [12]

    Aulbach M, Markham D, Murao M 2010 New J. Phys. 12 073025

    [13]

    Martin J, Giraud O, Braun P A, Braun D, Bastin T 2010 Phys. Rev. A 81 062347

    [14]

    Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L, Solano E 2009 Phys. Rev. Lett. 103 070503

    [15]

    Ribeiro P, Mosseri R 2011 Phys. Rev. Lett. 106 180502

    [16]

    Ganczarek W, Kuś M,Życzkowski K 2012 Phys. Rev. A 85 032314

    [17]

    Wang Z, Markham D 2012 Phys. Rev. Lett. 108 210407

    [18]

    Wang Z, Markham D 2013 Phys. Rev. A 87 12104

    [19]

    Cao H 2013 Acta Phys. Sin. 62 030303 (in Chinese)[曹辉2013物理学报62 030303]

    [20]

    Barnett R, Podolsky D, Refael G 2009 Phys. Rev. B 80 024420

    [21]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253

    [22]

    Yang C, Guo H, Fu L B, Chen S 2015 Phys. Rev. B 91 125132

    [23]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [24]

    Micheli A, Jaksch D, Cirac J I, Zoller P 2003 Phys. Rev. A 67 013607

    [25]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [26]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [27]

    Wu B, Niu Q, New J 2012 Physics 5 104

    [28]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [29]

    Chen Z D, Liang J Q, Shen S Q, Xie W F 2004 Phys. Rev. A 69 23611

    [30]

    Tonel A P, Links J, Foerster A 2005 J. Phys. A 38 1235

    [31]

    Fu L, Liu J 2006 Phys. Rev. A 74 063614

    [32]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese)[马云, 傅立斌, 杨志安, 刘杰2006物理学报55 5623]

    [33]

    Gong J B, Morales-Molina L, Hänggi P 2009 Phys. Rev. Lett. 103 133002

    [34]

    Pang M M, Hao Y 2016 Chin. Phys. B 25 40501

    [35]

    Wang G F, Fu L B, Liu L 2006 Phys. Rev. A 73 13619

    [36]

    Cirac J I, Lewenstein M, Mo K, Zoller P 1998 Phys. Rev. A 57 1208

    [37]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [38]

    Li S C, Duan W S 2009 Acta Phys. Sin. 58 4396 (in Chinese)[栗生长, 段文山2009物理学报58 4396]

  • [1] Ma Chuang, Yang Xiao-Long, Chen Han-Shuang, Zhang Hai-Feng. A mean-field approximation based BP algorithm for solving the stochastic block model. Acta Physica Sinica, 2021, 70(22): 228901. doi: 10.7498/aps.70.20210511
    [2] Liang Qi-Feng, Wang Zhi, Kawakami Takuto, Hu Xiao. Exploration of Majorana bound states in topological superconductors. Acta Physica Sinica, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [3] Li Fang-Jia, Liu Jun, Li Ru-Xin. Self-diffraction based self-reference spectral interferometry. Acta Physica Sinica, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [4] Xing Yao-Liang, Yang Zhi-An. Self-trapping and periodic modulation of beam propagation in semiconductor photorefractive medium. Acta Physica Sinica, 2013, 62(13): 130302. doi: 10.7498/aps.62.130302
    [5] Cao Hui. Entanglement dynamics in Majorana representation. Acta Physica Sinica, 2013, 62(3): 030303. doi: 10.7498/aps.62.030303
    [6] Xu Jian-Wei, Wang Shun-Jin. Relativistic mean field theory of electron and first, second-order Rashba effects. Acta Physica Sinica, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [7] Zhang Miao, Jia Huan-Yu. Generations of coherent states of single trapped cold ion beyond the Lamb-Dicke limit. Acta Physica Sinica, 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [8] Zou Shao-Cun, Xu Wei, Jin Yan-Fei. The study of stochastic Van der Pol system with delayed state feedback. Acta Physica Sinica, 2008, 57(12): 7527-7534. doi: 10.7498/aps.57.7527
    [9] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [10] Ma Yun, Fu Li-Bin, Yang Zhi-An, Liu Jie. Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement. Acta Physica Sinica, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [11] Qu Zhao-Jun, Liu Sheng-Dian, Yang Chuan-Lu. Interaction between a trapped ion with a single-mode quantized radiation field. Acta Physica Sinica, 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [12] FANG XI-MING, FENG MANG, SHI LEI, GAO KE-LIN, ZHU XI-WEN. EXACT SOLUTION OF JAYNES-CUMMINGS MODEL UNDER ROTATIONLESS WAVE APPROXIMATION USING-COHERENT-STATE REPRESENTATION. Acta Physica Sinica, 1997, 46(11): 2160-2165. doi: 10.7498/aps.46.2160
    [13] FENG JIAN, GAO XUE-YAN. DESTRUCTION OF PEAK SWITCHING IN STRONG-FIELD AUTOIONIZATION PHOTOELECTRON SPECTRA. Acta Physica Sinica, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [14] SHI JIAN-QING, LI GUO-QIANG, GAO QIN. SELF-CONSISTENT SEMI-CLASSICAL APPROACH FOR ANALYSING THE TEMPERATURE EFFECT ON NUCLEON MEAN FREE PATH. Acta Physica Sinica, 1990, 39(1): 24-29. doi: 10.7498/aps.39.24
    [15] LI ZHENG-ZHONG, ZHOU QING-CHUN, QIU YANG. A SLAVE-BOSON MEAN FIELD THEORY FOR THE HEAVY-FERMION ALLOYS. Acta Physica Sinica, 1989, 38(12): 2019-2028. doi: 10.7498/aps.38.2019
    [16] YAO GUAN-HUA, XU ZHI-ZHAN. COHERENT EFFECTS IN INTENSE LASER-FIELD INDUCED AUTOIONIZATION. Acta Physica Sinica, 1988, 37(11): 1760-1766. doi: 10.7498/aps.37.1760
    [17] WANG SHUN-JIN. SELF-CONSISTENT MEAN FIELD IN MANY-BODY CORRELATION DYNAMICS. Acta Physica Sinica, 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
    [18] SU ZHAO-BING, YU LU, ZHOU GUANG-ZHAO. THE GENERALIZED MEAN FIELD EXPANSIONS FOR MANY FERMION SYSTEMS. Acta Physica Sinica, 1984, 33(7): 999-1007. doi: 10.7498/aps.33.999
    [19] PU FU-CHO, WANG DING-SHENG. THE MEAN FIELD THEORY FOR SPONTANEOUS MAGNETIZATION OF A NON-UNIFORM FERROMAGNET. Acta Physica Sinica, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [20] Y. H. Yang. NUCLEAR LEVEL SPACING DEDUCED FROM THE RESONANCE ABSORPTION OF NEUTRONS. Acta Physica Sinica, 1947, 7(1): 1-8. doi: 10.7498/aps.7.1
Metrics
  • Abstract views:  6145
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2017
  • Accepted Date:  03 June 2017
  • Published Online:  05 August 2017

/

返回文章
返回