Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems

Zheng Shi-Wang Wang Jian-Bo Chen Xiang-Wei Li Yan-Min Xie Jia-Fang

Citation:

Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems

Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The operational system of the spacecraft is general a variable mass one, of which the symmetry and the conserved quantity imply physical rules of the space system. In this paper, Tznoff equations of the variable mass nonholonomic system are derived, from which the Lie symmetries of Tznoff equations for the variable mass nonholonomic system and conserved quantities are derived and are researched. The function expressions of conserved quantities and the criterion equations which deduce these conserved quantities are presented. This result has some theoretical value for further research of the conservation laws obeyed by the variable mass system.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972127, 11102001).
    [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) p5 (in Chinese) [李子平1993 经典和量子约束系统及其对称性质(北京: 北京工业大学出版社) 第5页]

    [3]
    [4]
    [5]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) p90 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社) 第90页]

    [6]
    [7]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [8]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p264 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第264页]

    [9]
    [10]
    [11]

    Fu J L, Chen L Q, Xie F P 2004 Chin. Phys. 13 1611

    [12]

    Chen X W, Liu C M, Li Y M 2006 Chin. Phys. 15 470

    [13]
    [14]

    Luo S K 2007 Chin. Phys. 16 3182

    [15]
    [16]
    [17]

    Wu H B, Mei F X 2010 Chin. Phys. B 19 030303

    [18]

    Zhang Y 2008 Commun. Theor. Phys. 50 59

    [19]
    [20]

    Lou Z M 2010 Acta Phys. Sin. 59 719 (in Chinese) [楼智美 2010 物理学报 59 719]

    [21]
    [22]
    [23]

    Xia L L 2011 Chin. Phys. Lett. 28 040201

    [24]

    Liu X W, Li Y C, Xia L L 2011 Chin. Phys. B 20 070203

    [25]
    [26]

    Zhang H B, Chen L Q, Gu S L 2004 Commun. Theor. Phys. 42 321

    [27]
    [28]
    [29]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

    [30]

    Fang J H 2010 Chin. Phys. B 19 040301

    [31]
    [32]

    Li Y, Fang J H, Zhang K J 2011 Chin. Phys. B 20 030201

    [33]
    [34]

    Jia L Q, Xie Y L, Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese) [贾利群, 解银丽, 罗绍凯 2011 物理学报 60 040201]

    [35]
    [36]

    Xie Y, Jia L Q 2010 Chin. Phys. Lett. 27 120201

    [37]
    [38]

    Ding N, Fang J H 2011 Chin. Phys. B 20 120201

    [39]
    [40]
    [41]

    Wang P 2011 Chin. Phys. Lett. 28 040203

    [42]
    [43]

    Zheng S W, Jia L Q, Yu H S 2006 Chin. Phys. 15 1399

    [44]

    Zheng S W, Xie J F, Chen W C 2008 Chin. Phys. Lett. 25 809

    [45]
    [46]

    Zheng S W, Xie J F, Jia L Q 2007 Commun. Theor. Phys. 48 43

    [47]
    [48]
    [49]

    Zheng S W, Xie J F, Chen X W, Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向炜, 杜雪莲 2010 物理学报 59 5209]

    [50]

    Zheng S W, Xie J F, Wang J B, Chen X W 2010 Chin. Phys. Lett. 27 030307

    [51]
    [52]
    [53]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [54]

    Mei F X 2003 Tr Beijing Inst. Technol. 23 1 (in Chinese) [梅凤翔2003 北京理工大学学报 23 1]

    [55]
    [56]

    Fang J H 2003 Commun. Theor. Phys. 40 269

    [57]
    [58]
    [59]

    Zhang P Y, Fang J H 2006 Acta Phys. Sin. 55 3813 (in Chinese) [张鹏玉, 方建会 2006 物理学报 55 3813]

    [60]
    [61]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p339 (in Chinese) [梅凤翔, 刘端, 罗 勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第339页]

  • [1]

    Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI II 235

    [2]

    Li Z P 1993 Classical and Quantum Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) p5 (in Chinese) [李子平1993 经典和量子约束系统及其对称性质(北京: 北京工业大学出版社) 第5页]

    [3]
    [4]
    [5]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) p90 (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社) 第90页]

    [6]
    [7]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [8]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) p264 (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京: 北京理工大学出版社) 第264页]

    [9]
    [10]
    [11]

    Fu J L, Chen L Q, Xie F P 2004 Chin. Phys. 13 1611

    [12]

    Chen X W, Liu C M, Li Y M 2006 Chin. Phys. 15 470

    [13]
    [14]

    Luo S K 2007 Chin. Phys. 16 3182

    [15]
    [16]
    [17]

    Wu H B, Mei F X 2010 Chin. Phys. B 19 030303

    [18]

    Zhang Y 2008 Commun. Theor. Phys. 50 59

    [19]
    [20]

    Lou Z M 2010 Acta Phys. Sin. 59 719 (in Chinese) [楼智美 2010 物理学报 59 719]

    [21]
    [22]
    [23]

    Xia L L 2011 Chin. Phys. Lett. 28 040201

    [24]

    Liu X W, Li Y C, Xia L L 2011 Chin. Phys. B 20 070203

    [25]
    [26]

    Zhang H B, Chen L Q, Gu S L 2004 Commun. Theor. Phys. 42 321

    [27]
    [28]
    [29]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

    [30]

    Fang J H 2010 Chin. Phys. B 19 040301

    [31]
    [32]

    Li Y, Fang J H, Zhang K J 2011 Chin. Phys. B 20 030201

    [33]
    [34]

    Jia L Q, Xie Y L, Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese) [贾利群, 解银丽, 罗绍凯 2011 物理学报 60 040201]

    [35]
    [36]

    Xie Y, Jia L Q 2010 Chin. Phys. Lett. 27 120201

    [37]
    [38]

    Ding N, Fang J H 2011 Chin. Phys. B 20 120201

    [39]
    [40]
    [41]

    Wang P 2011 Chin. Phys. Lett. 28 040203

    [42]
    [43]

    Zheng S W, Jia L Q, Yu H S 2006 Chin. Phys. 15 1399

    [44]

    Zheng S W, Xie J F, Chen W C 2008 Chin. Phys. Lett. 25 809

    [45]
    [46]

    Zheng S W, Xie J F, Jia L Q 2007 Commun. Theor. Phys. 48 43

    [47]
    [48]
    [49]

    Zheng S W, Xie J F, Chen X W, Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向炜, 杜雪莲 2010 物理学报 59 5209]

    [50]

    Zheng S W, Xie J F, Wang J B, Chen X W 2010 Chin. Phys. Lett. 27 030307

    [51]
    [52]
    [53]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [54]

    Mei F X 2003 Tr Beijing Inst. Technol. 23 1 (in Chinese) [梅凤翔2003 北京理工大学学报 23 1]

    [55]
    [56]

    Fang J H 2003 Commun. Theor. Phys. 40 269

    [57]
    [58]
    [59]

    Zhang P Y, Fang J H 2006 Acta Phys. Sin. 55 3813 (in Chinese) [张鹏玉, 方建会 2006 物理学报 55 3813]

    [60]
    [61]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p339 (in Chinese) [梅凤翔, 刘端, 罗 勇 1991 高等分析力学 (北京: 北京理工大学出版社) 第339页]

  • [1] Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica, 2013, 62(12): 120201. doi: 10.7498/aps.62.120201
    [2] Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica, 2012, 61(2): 021101. doi: 10.7498/aps.61.021101
    [3] Dong Wen-Shan, Huang Bao-Xin. Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica, 2010, 59(1): 1-6. doi: 10.7498/aps.59.1
    [4] Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica, 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [5] Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(5): 2935-2938. doi: 10.7498/aps.59.2935
    [6] Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [7] Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [8] Zhang Yi, Ge Wei-Kuan. Lagrange symmetries and conserved quantities for nonholonomic systems of non-Chetaev’s type. Acta Physica Sinica, 2009, 58(11): 7447-7451. doi: 10.7498/aps.58.7447
    [9] Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica, 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [10] Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [11] Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica, 2008, 57(9): 5369-5373. doi: 10.7498/aps.57.5369
    [12] Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica, 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [13] Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [14] Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [15] Mei Feng-Xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica, 2003, 52(5): 1048-1050. doi: 10.7498/aps.52.1048
    [16] Zhang Yi. . Acta Physica Sinica, 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [17] Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui. . Acta Physica Sinica, 2002, 51(10): 2186-2190. doi: 10.7498/aps.51.2186
    [18] FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica, 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [19] Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica, 2001, 50(1): 1-7. doi: 10.7498/aps.50.1
    [20] MEI FENG-XIANG. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica, 2000, 49(7): 1207-1210. doi: 10.7498/aps.49.1207
Metrics
  • Abstract views:  7103
  • PDF Downloads:  681
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2011
  • Accepted Date:  05 June 2012
  • Published Online:  05 June 2012

/

返回文章
返回