Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Complex information system security risk propagation research based on cellular automata

Li Zhao Xu Guo-Ai Ban Xiao-Fang Zhang Yi Hu Zheng-Ming

Citation:

Complex information system security risk propagation research based on cellular automata

Li Zhao, Xu Guo-Ai, Ban Xiao-Fang, Zhang Yi, Hu Zheng-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There models of complex information system security risk propagation are proposed in this paper based on cellular automata, and the probabilistic behaviors of security risk propagation in complex information systems are investigated by running the proposed models on nearest-neighbor coupled network, Erdos-Renyi random graph network, Watts-Strogatz small world network and Barabasi-Albert power law network respectively. Analysis and simulations show that the proposed models describe the behaviors of security risk propagation in the above four kinds of networks perfectly. By researching on the propagation threshold of security risks in four kinds of network topology and comparing with the existing research result, the correctness of the models is verified. The relationship between the heterogeneity of degree distribution and the value of the propagation threshold is analyzed and verified in this paper. Through the research on the evolutionary trends of security risk propagation, the relationship between the heterogeneity of degree distribution and the influence sphere and speed of security risk propagation is analyzed and verified as well. Meanwhile, the relationship between the heterogeneity of degree distribution and the effect of the immune mechanism on controlling security risk propagation is pointed out. Furthermore, the result of simulations describes the negative exponent relationship between security risk extinction rate and the propagation rate. The key factors affecting the security risk propagation are analyzed in this paper, providing the guidance for the control of security risk propagation in complex information systems.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60970135, 61170282), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120005110017), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAH06B02).
    [1]

    Feng D, Zhang Y, Zhang Y Q 2004 J. Commun. 25 10 (in Chinese) [冯登国, 张阳, 张玉清 2004 通信学报 25 10]

    [2]

    Zhang Y Z, Fang B X, Chi Y, Yun X C 2007 J. Software 18 137 (in Chinese) [张永铮, 方滨兴, 迟悦, 云晓春 2007 软件学报 18 137]

    [3]

    Kephart J O, White S R, Chess D M 1993 IEEE Spectrum 30 20

    [4]

    Okamura H, Kobayashi H, Dohi T 2005 Proceedings of the 16th IEEE International Symposium on Sof tware Reliability Engineering Chicago, IL, USA, November 8-11, 2005 p149

    [5]

    Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Depend. Secure Comput. 4 105

    [6]

    Zou C C, Gong W, Towsley D 2002 Proceedings of the 9th ACM Conference on Computer and Communications Security Washington, DC, USA, November 18-22, 2002 p10

    [7]

    Song Y R, Jiang G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉荣, 蒋国平2009 物理学报 58 5911]

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys. Sin. 59 6724 (in Chinese) [王亚奇, 蒋国平2010 物理学报 59 6724]

    [9]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平2011 物理学报 60 080510]

    [10]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [11]

    Fuentes M A, Kuperman M N 1999 Physica A 267 471

    [12]

    Sirakoulis G C, Karafyllidis I, Thanailakis A 2000 Ecol. Model. 133 209

    [13]

    White S H, del Rey A M, Sanchez G R 2009 Appl. Math. Sci. 3 959

    [14]

    Gagliardi H, Alves D 2010 Math. Popul. Stud. 17 79

    [15]

    Shan X M, Liu F, Ren Y 2002 Acta Phys. Sin. 51 1175 (in Chinese) [山秀明, 刘锋, 任勇2002 物理学报 51 1175]

    [16]

    Kong L J, Liu M R, L X Y 2001 Acta Phys. Sin. 50 1255 (in Chinese) [孔令江, 刘慕仁, 吕晓阳 2001 物理学报 50 1255]

    [17]

    Dai S Q, Dong L Y, Xue Y 2001 Acta Phys. Sin. 50 445 (in Chinese) [戴世强, 董力耘, 薛郁2001 物理学报 50 445]

    [18]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [19]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [20]

    Barabsi A L, Albert R 1999 Science 286 509

    [21]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 035108

    [22]

    Chakrabarti D, Wang Y, Wang C 2007 ACM Trans. Inform. Syst. Secur. 10 1

    [23]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [24]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

  • [1]

    Feng D, Zhang Y, Zhang Y Q 2004 J. Commun. 25 10 (in Chinese) [冯登国, 张阳, 张玉清 2004 通信学报 25 10]

    [2]

    Zhang Y Z, Fang B X, Chi Y, Yun X C 2007 J. Software 18 137 (in Chinese) [张永铮, 方滨兴, 迟悦, 云晓春 2007 软件学报 18 137]

    [3]

    Kephart J O, White S R, Chess D M 1993 IEEE Spectrum 30 20

    [4]

    Okamura H, Kobayashi H, Dohi T 2005 Proceedings of the 16th IEEE International Symposium on Sof tware Reliability Engineering Chicago, IL, USA, November 8-11, 2005 p149

    [5]

    Zou C C, Towsley D, Gong W B 2007 IEEE Trans. Depend. Secure Comput. 4 105

    [6]

    Zou C C, Gong W, Towsley D 2002 Proceedings of the 9th ACM Conference on Computer and Communications Security Washington, DC, USA, November 18-22, 2002 p10

    [7]

    Song Y R, Jiang G P 2009 Acta Phys. Sin. 58 5911 (in Chinese) [宋玉荣, 蒋国平2009 物理学报 58 5911]

    [8]

    Wang Y Q, Jiang G P 2010 Acta Phys. Sin. 59 6724 (in Chinese) [王亚奇, 蒋国平2010 物理学报 59 6724]

    [9]

    Wang Y Q, Jiang G P 2011 Acta Phys. Sin. 60 080510 (in Chinese) [王亚奇, 蒋国平2011 物理学报 60 080510]

    [10]

    Jin Z, Liu Q X, Mainul H 2007 Chin. Phys. 16 1267

    [11]

    Fuentes M A, Kuperman M N 1999 Physica A 267 471

    [12]

    Sirakoulis G C, Karafyllidis I, Thanailakis A 2000 Ecol. Model. 133 209

    [13]

    White S H, del Rey A M, Sanchez G R 2009 Appl. Math. Sci. 3 959

    [14]

    Gagliardi H, Alves D 2010 Math. Popul. Stud. 17 79

    [15]

    Shan X M, Liu F, Ren Y 2002 Acta Phys. Sin. 51 1175 (in Chinese) [山秀明, 刘锋, 任勇2002 物理学报 51 1175]

    [16]

    Kong L J, Liu M R, L X Y 2001 Acta Phys. Sin. 50 1255 (in Chinese) [孔令江, 刘慕仁, 吕晓阳 2001 物理学报 50 1255]

    [17]

    Dai S Q, Dong L Y, Xue Y 2001 Acta Phys. Sin. 50 445 (in Chinese) [戴世强, 董力耘, 薛郁2001 物理学报 50 445]

    [18]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [19]

    Watts D J, Strogatz S H 1998 Nature 393 409

    [20]

    Barabsi A L, Albert R 1999 Science 286 509

    [21]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 035108

    [22]

    Chakrabarti D, Wang Y, Wang C 2007 ACM Trans. Inform. Syst. Secur. 10 1

    [23]

    Erdos P, Rnyi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [24]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117

  • [1] Su Zhen, Gao Chao, Li Xiang-Hua. Analysis of the effect of node centrality on diffusion mode in complex networks. Acta Physica Sinica, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [2] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [3] Min Lei, Liu Zhi, Tang Xiang-Yang, Chen Mao, Liu San-Ya. Evaluating influential spreaders in complex networks by extension of degree. Acta Physica Sinica, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [4] Liu Shu-Xin, Ji Xin-Sheng, Liu Cai-Xia, Guo Hong. A complex network evolution model for network growth promoted by information transmission. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [5] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [6] Ren Zhuo-Ming, Liu Jian-Guo, Shao Feng, Hu Zhao-Long, Guo Qiang. Analysis of the spreading influence of the nodes with minimum K-shell value in complex networks. Acta Physica Sinica, 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [7] Ren Gang, Lu Li-Li, Wang Wei. Modeling bi-direction pedestrian flow by cellular automata and complex network theories. Acta Physica Sinica, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [8] Cui Ai-Xiang, Fu Yan, Shang Ming-Sheng, Chen Duan-Bing, Zhou Tao. Emergence of local structures in complex network:common neighborhood drives the network evolution. Acta Physica Sinica, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [9] Fu Bai-Bai, Gao Zi-You, Lin Yong, Wu Jian-Jun, Li Shu-Bin. The analysis of traffic congestion and dynamic propagation properties based on complex network. Acta Physica Sinica, 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [10] Tian Chang-Hai, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves. Acta Physica Sinica, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [11] Song Yu-Rong, Jiang Guo-Ping, Xu Jia-Gang. An epidemic spreading model in adaptive networks based on cellular automata. Acta Physica Sinica, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [12] Wang Ya-Qi, Jiang Guo-Ping. Epidemic spreading in complex networks with spreading delay based on cellular automata. Acta Physica Sinica, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [13] Wang Ya-Qi, Jiang Guo-Ping. Virus spreading on complex networks with imperfect immunization. Acta Physica Sinica, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [15] Song Yu-Rong, Jiang Guo-Ping. Research of malware propagation in complex networks based on 1-D cellular automata. Acta Physica Sinica, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [18] Zhou Hua-Liang, Gao Zi-You, Li Ke-Ping. Cellular automaton model for moving-like block system and study of train’s delay propagation. Acta Physica Sinica, 2006, 55(4): 1706-1710. doi: 10.7498/aps.55.1706
    [19] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] Liu Feng, Ren Yong, Shan Xiu-Ming. . Acta Physica Sinica, 2002, 51(6): 1175-1180. doi: 10.7498/aps.51.1175
Metrics
  • Abstract views:  7531
  • PDF Downloads:  1086
  • Cited By: 0
Publishing process
  • Received Date:  02 May 2013
  • Accepted Date:  17 June 2013
  • Published Online:  05 October 2013

/

返回文章
返回