Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of mapping domain of the acoustic field interference structures radiated by a moving target

Lin Wang-Sheng Liang Guo-Long Wang Yan Fu Jin Zhang Guang-Pu

Citation:

Characteristics of mapping domain of the acoustic field interference structures radiated by a moving target

Lin Wang-Sheng, Liang Guo-Long, Wang Yan, Fu Jin, Zhang Guang-Pu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In shallow water exist the stable and significant interference characteristics of low frequency sound propagation, which contain the information of the sound source state and waveguide peculiarity. A simplified mapping method for describing the scalar and vector sound field interference structure radiated by a moving target, and an indicatory mechanism of the target state implicated in the energy distribution of the mapping domain are investigated in this paper. The mapping characteristics of two-dimensional Fourier transform of the vector sound field time (space) frequency interference spectrum are analyzed theoretically. Relations among waveguide invariant, range-rate, heading angle, and energy ridge slope of the mapping domain for time-frequency interference spectrum produced by a uniformly moving target are derived. Indication of target attacking or moving away, and the degree of threatening through symbols or the absolute value change of mapping domain’s ridge slope are demonstrated. Then numerical simulation and sea trial research are carried out. Experimental results with theoretical analysis and simulation results are in good agreement with each other. Research results show that the scalar and vector field time (space) frequency interference structure can be simplified by the two-dimensional Fourier transform. The mapping domain ridges, range-rate, heading angle and waveguide invariant show an analytic relationship among them. Variation embodied in the form of scalar and vector field interference structure obtained after mapping are more consistent with each other. The ridge of mapping domain can indicate the moving state of target concisely.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279043, 61201411, 51209059, 51009042), the Foundation of Science and Technology on Underwater Acoustic Laboratory (Grant Nos. 9140C200203110C2003, 9140C200802110 C2001), the Youth Scholar Backbone Supporting Plan for Colleges and Universities of Heilongjiang, China (Grant No. 1253G019).
    [1]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p69

    [2]

    Zhang R H, Li Z L, Peng Z H, Li F H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p16

    [3]

    Li Q H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p83

    [4]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [5]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [6]

    Weston D E 1972 J. Sound. Vib. 21 57

    [7]

    Chuprov S D 1982 Interference structure of a Sound Field in a Layered Ocean, in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics. Current State pp71–91

    [8]

    Burenkov S V 1989 Soviet Physical Acoustics 35 465

    [9]

    Grachev C A 1993 Soviet Physical Acoustics 39 33

    [10]

    Kuz’kin C A 1999 Soviet Physical Acoustics 45 224

    [11]

    D’Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [12]

    D’Spain G L, Williams D P, Kuperman W A, 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p171

    [13]

    Li Q H, Wang L, Wei C H, Li Y, Ma X J, Yu H C 2011 Acta Acustica 36 253 (in Chinese) [李启虎, 王磊, 卫翀华, 李嶷, 马雪洁, 于海春 2011 声学学报 36 253]

    [14]

    Dall’Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [15]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 物理学报 57 5742]

    [16]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335]

    [17]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2012 Acta Phys. Sin. 61 054303 (in Chinese) [余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟 2012 物理学报 61 054303]

    [18]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [19]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [21]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta Phys. Sin. 62 4301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 4301]

    [22]

    Tao H L, Krolik J 2007 Proceedings of IEEE Oceans Aberdeen, Scotland, June 18–21, 2007 p1

    [23]

    Turgut A, Orr M 2010 J. Acoust. Soc. Am. 127 73

    [24]

    Yu Y, Hui J Y, Ying J W, Hui J, Wang Z J 2011 Acta Acustica 36 258 (in Chinese) [余赟, 惠俊英, 殷敬伟, 惠娟, 王自娟 2011 声学学报 36 258]

    [25]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [26]

    Rouseff D, Spindel R C 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p137

    [27]

    Baggeroer A B 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p151

    [28]

    An L, Wang Z Q, Lu J R 2008 Journal of Electronics & Information Technology 30 2930 (in Chinese) [安良, 王志强, 陆佶人 2008 电子与信息学报 30 2930]

  • [1]

    Kuperman W A, Song H C 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p69

    [2]

    Zhang R H, Li Z L, Peng Z H, Li F H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p16

    [3]

    Li Q H 2012 AIP Conference Proceedings of Advances in Ocean Acoustics Beijing, China, May 1–3, 2012 p83

    [4]

    Brekhovskikh L M, Lysanov Y P 2002 Fundamentals of Ocean Acoustics (New York: Springer-Verlag)

    [5]

    Gershman S G, Tuzhilkin Yu I 1965 Sov. Phys. Acoust. 1 34

    [6]

    Weston D E 1972 J. Sound. Vib. 21 57

    [7]

    Chuprov S D 1982 Interference structure of a Sound Field in a Layered Ocean, in Brekhovskih L M, Andreevoi L B (ed) Ocean Acoustics. Current State pp71–91

    [8]

    Burenkov S V 1989 Soviet Physical Acoustics 35 465

    [9]

    Grachev C A 1993 Soviet Physical Acoustics 39 33

    [10]

    Kuz’kin C A 1999 Soviet Physical Acoustics 45 224

    [11]

    D’Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [12]

    D’Spain G L, Williams D P, Kuperman W A, 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p171

    [13]

    Li Q H, Wang L, Wei C H, Li Y, Ma X J, Yu H C 2011 Acta Acustica 36 253 (in Chinese) [李启虎, 王磊, 卫翀华, 李嶷, 马雪洁, 于海春 2011 声学学报 36 253]

    [14]

    Dall’Osto D R, Dahl P H, Chol J W 2012 J. Acoust. Soc. Am. 127 2023

    [15]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 物理学报 57 5742]

    [16]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335]

    [17]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2012 Acta Phys. Sin. 61 054303 (in Chinese) [余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟 2012 物理学报 61 054303]

    [18]

    Rakotonariv S T, Kuperman W A 2012 J. Acoust. Soc. Am. 132 2218

    [19]

    Ren Q Y, Hermand J P 2013 J. Acoust. Soc. Am. 133 82

    [20]

    Lin W S 2013 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [林旺生 2013 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [21]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta Phys. Sin. 62 4301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 4301]

    [22]

    Tao H L, Krolik J 2007 Proceedings of IEEE Oceans Aberdeen, Scotland, June 18–21, 2007 p1

    [23]

    Turgut A, Orr M 2010 J. Acoust. Soc. Am. 127 73

    [24]

    Yu Y, Hui J Y, Ying J W, Hui J, Wang Z J 2011 Acta Acustica 36 258 (in Chinese) [余赟, 惠俊英, 殷敬伟, 惠娟, 王自娟 2011 声学学报 36 258]

    [25]

    Yang T C 2003 J. Acoust. Soc. Am. 113 1342

    [26]

    Rouseff D, Spindel R C 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p137

    [27]

    Baggeroer A B 2002 AIP Conference Proceedings of Ocean acoustic interference phenomena and signal processing San Francisco, California, May 1–3, 2002 p151

    [28]

    An L, Wang Z Q, Lu J R 2008 Journal of Electronics & Information Technology 30 2930 (in Chinese) [安良, 王志强, 陆佶人 2008 电子与信息学报 30 2930]

  • [1] Li Yong-Fei, Guo Rui-Ming, Zhao Hang-Fang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] The Analysis on Acoustic field distribution of angle dimension in deep ocean bottom bounce area and the application on sonar vertical beam pitch. Acta Physica Sinica, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [3] Lu Man-Xin, Deng Wen-Ji. Topological invariants and edge states in one-dimensional two-tile lattices. Acta Physica Sinica, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [4] Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke. Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [5] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang, Yang Qiu-Long. A source range and depth estimation method based on modal dedispersion transform. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [6] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Ren Yun. A passive source ranging method using the waveguide-invariant-warping operator. Acta Physica Sinica, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [7] Lu Li-Cheng, Ma Li. Analysis of waveguide time-frequency based on Warping transform. Acta Physica Sinica, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [8] Song Wen-Hua, Hu Tao, Guo Sheng-Ming, Ma Li. Time-varying characteristics of the waveguide invariant under internal wave condition in the shallow water area. Acta Physica Sinica, 2014, 63(19): 194303. doi: 10.7498/aps.63.194303
    [9] Lin Wang-Sheng, Liang Guo-Long, Fu Jin, Zhang Guang-Pu. The mechanism of the interference structure in shallow water vector acoustic field and experimental investigation. Acta Physica Sinica, 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [10] Yu Yun, Hui Jun-Ying, Chen Yang, Hui Juan, Yin Jing-Wei. Researches on the interference structure in low-frequency acoustic field based on space-time filter theory. Acta Physica Sinica, 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [11] Mei Feng-Xiang, Cai Jian-Le. Integral invariants of a generalized Birkhoff system. Acta Physica Sinica, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657
    [12] Ma Zhong-Qi, Xu Bo-Wei. Exact quantization rule and the invariant. Acta Physica Sinica, 2006, 55(4): 1571-1579. doi: 10.7498/aps.55.1571
    [13] Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [14] Song Li-Ping, Guo Qi-Zhi, Tan Wei-Han. “The quasi invariant V” analysis for the chaotic behavior of Lorenz map in the nearest neighborhood of the second threshold of laser. Acta Physica Sinica, 2004, 53(1): 119-124. doi: 10.7498/aps.53.119
    [15] Long Yun-Xiang, Miao Guo-Ping. . Acta Physica Sinica, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [16] QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG. SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica, 2001, 50(5): 811-815. doi: 10.7498/aps.50.811
    [17] FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO. INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica, 1999, 48(6): 1011-1022. doi: 10.7498/aps.48.1011
    [18] GAO XIAO-CHUN, GAO JUN, FU JIAN. QUANTUM INVARIANT THEORY AND THE MOTION OF AN ION IN A COMBINED TRAP. Acta Physica Sinica, 1996, 45(6): 912-923. doi: 10.7498/aps.45.912
    [19] GUO DONG-YAO, GUO SHI-SHAN. SIGN DISTRIBUTION OF TWO-PHASE STRUCTURE INVARIANTS FOR THE CRYSTAL cis-[PtDMBA(ClCH2CO2)2]. Acta Physica Sinica, 1990, 39(7): 158-162. doi: 10.7498/aps.39.158-2
    [20] SUN HONG-LIN, ZHANG GANG, GUO DONG-YAO. TWO-WAVELENGTH NEIGHBORHOOD PRINCIPLE OF TWO-PHASE STRUCTURE INVARIANTS. Acta Physica Sinica, 1989, 38(5): 824-828. doi: 10.7498/aps.38.824
Metrics
  • Abstract views:  6539
  • PDF Downloads:  620
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2013
  • Accepted Date:  04 November 2013
  • Published Online:  05 February 2014

/

返回文章
返回