-
Based on the relationship between the horizontal wavenumber difference of two modes and the waveguide invariant in a range-independent shallow water waveguide, a frequency-warping operator is proposed for the autocorrelation function of the received signal. This operator can transform the cross-correlation functions of two different modes in the signal autocorrelation function into separable impulsive sequences. With a guide source providing the dispersive characteristics of the waveguide, the source range can be extracted from the relative delay time of the impulsive sequence using a single hydrophone. The availability of the waveguide-invariant-warping operator in the passive source range estimation is verified by simulated and experimental data.
-
Keywords:
- waveguide invariant /
- warping transform /
- passive source range estimation /
- autocorrelation function
[1] Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Processing 43 2269
[2] Touzé G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783
[3] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[4] Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advances in Signal Processing 2010 304103
[5] Niu H Q, Zhang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301
[6] Zhou S H, Niu H Q, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学, 力学, 天文学 43 68]
[7] Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225
[8] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]
[9] Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424
[10] Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 Published in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges Biloxi, October 26-29 2009 p497
[11] Wang N 2006 Presentation in the 9th Western Pacific Acoustics Conference Seoul, June 26-28 2006
[12] Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245
[13] D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454
[14] Grachev G 1993 Acoust. Phys. 39 33
[15] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408
[16] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
-
[1] Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Processing 43 2269
[2] Touzé G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783
[3] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[4] Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advances in Signal Processing 2010 304103
[5] Niu H Q, Zhang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301
[6] Zhou S H, Niu H Q, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学, 力学, 天文学 43 68]
[7] Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225
[8] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]
[9] Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424
[10] Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 Published in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges Biloxi, October 26-29 2009 p497
[11] Wang N 2006 Presentation in the 9th Western Pacific Acoustics Conference Seoul, June 26-28 2006
[12] Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245
[13] D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454
[14] Grachev G 1993 Acoust. Phys. 39 33
[15] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408
[16] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
Catalog
Metrics
- Abstract views: 6867
- PDF Downloads: 320
- Cited By: 0