-
Airborne Raman scattering laser lidar technology can measure the three-dimensional (3D) distribution of subsurface seawater temperature rapidly, and it has important social and economic values. In this paper, firstly, the relationship between Raman stretching vibration spectrum peak position and excitation wavelength, and the relationship between the full width half maximum (FWHM) of Raman stretching vibration spectrum and excitation wavelength are analyzed theoretically. The results show that as the excitation wavelength increases, Raman scattering peak gradually shifts toward longer wavelength and the Raman spectrum FWHM increases noticeably. Secondly, to verify the theoretical results, the Raman spectra at different water temperatures excited by 450 nm and 532 nm lasers are measured experimentally, and the fitting analyses of them by single Gauss peak fitting method are made, the relationship between Gauss peak wavelength and temperature is obtained, and the effect of laser wavelength on the temperature measurement precision is analyzed. It is found that larger excitation wavelength can increase Raman spectrum measurement accuracy, thereby improving the temperature measurement precision. Finally, the Raman scattering lidar equation is established, the Raman scattering coefficients and attenuation coefficients of different wavelength lasers are analyzed, and the corresponding effects of laser wavelength on the lidar system detection depth are studied. Results show that the lidar system detection depth is greatly influenced by the laser wavelength, lidar system with laser wavelength below 480 nm has a good detection ability, and large wavelength laser greatly reduces lidar system detection depth. The effects of laser wavelength on both temperature measurement precision and detection depth should be considered in the desigin of Raman scattering lidar system.
-
Keywords:
- seawater temperature /
- Raman scattering /
- temperature measurement precision /
- detection depth
[1] Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 036101
[2] Chang C H 1976 U.S. Patent 3986775
[3] Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732
[4] Collins D J, Bell J A, Zanoni R, McDermid I S, Breckinridge J B, Sepulveda C A 1984 Proc. SPIE 489 247
[5] Liu Z S, Ma J, Zhang J L, Chen W Z 1991 Proc. SPIE 1558 306
[6] Liu Z S, Zhang J L, Chen W Z, Huang X S, Ma J 1992 Proc. SPIE 1633 321
[7] Cecchi G, Raimondi V 1995 International Geoscience and Remote Sensing Symposium (Firenze: IEEE) p1741
[8] Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Laser Phys. 9 422
[9] Shi S P, Zhang Q, Zhang L, Wang R, Zhu Z H, Jiang G, Fu Y B 2011 Chin. Phys. B 20 063102
[10] Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356
[11] Han D, Chen L F, Li X X, Tao J H, Su L, Zou M M, Fan M 2013 Acta Phys. Sin. 62 109301 (in Chinese) [韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌 2013 物理学报 62 109301]
[12] David M C, Korenowski G M 1998 J. Chem. Phys. 108 2669
[13] Sun Q 2009 Vib. Spectrosc. 51 213
[14] Bartlett J S, Voss K J, Sathyendranath S, Vodacek A 1998 Appl. Opt. 37 3324
[15] Austin R W, Petzold T J 1986 Opt. Eng. 25 471
-
[1] Gu B, Zhang F S, Huang Y G, Fang X 2010 Chin. Phys. B 19 036101
[2] Chang C H 1976 U.S. Patent 3986775
[3] Leonard D A, Caputo B, Hoge F E 1979 Appl. Opt. 18 1732
[4] Collins D J, Bell J A, Zanoni R, McDermid I S, Breckinridge J B, Sepulveda C A 1984 Proc. SPIE 489 247
[5] Liu Z S, Ma J, Zhang J L, Chen W Z 1991 Proc. SPIE 1558 306
[6] Liu Z S, Zhang J L, Chen W Z, Huang X S, Ma J 1992 Proc. SPIE 1633 321
[7] Cecchi G, Raimondi V 1995 International Geoscience and Remote Sensing Symposium (Firenze: IEEE) p1741
[8] Becucci M, Cavalieri S, Eramo R, Fini L, Materazzi M 1999 Laser Phys. 9 422
[9] Shi S P, Zhang Q, Zhang L, Wang R, Zhu Z H, Jiang G, Fu Y B 2011 Chin. Phys. B 20 063102
[10] Haltrin V I, Kattawar G W 1993 Appl. Opt. 32 5356
[11] Han D, Chen L F, Li X X, Tao J H, Su L, Zou M M, Fan M 2013 Acta Phys. Sin. 62 109301 (in Chinese) [韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌 2013 物理学报 62 109301]
[12] David M C, Korenowski G M 1998 J. Chem. Phys. 108 2669
[13] Sun Q 2009 Vib. Spectrosc. 51 213
[14] Bartlett J S, Voss K J, Sathyendranath S, Vodacek A 1998 Appl. Opt. 37 3324
[15] Austin R W, Petzold T J 1986 Opt. Eng. 25 471
Catalog
Metrics
- Abstract views: 6890
- PDF Downloads: 850
- Cited By: 0