Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Blind angle elimination method in weak signal detection with Duffing oscillator and construction of detection statistics

Niu De-Zhi Chen Chang-Xing Ban Fei Xu Hao-Xiang Li Yong-Bin Wang Zhuo Ren Xiao-Yue Chen Qiang

Citation:

Blind angle elimination method in weak signal detection with Duffing oscillator and construction of detection statistics

Niu De-Zhi, Chen Chang-Xing, Ban Fei, Xu Hao-Xiang, Li Yong-Bin, Wang Zhuo, Ren Xiao-Yue, Chen Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aiming at the blind angle in detecting weak signals of the same frequency by Duffing oscillator, a novel method of dephasing for the driving signals is proposed to eliminate the blind angle. According to the characteristic of weak signals, expression of blind angle is analyzed, and then the range of blind angle is found out, which corresponds to the amplitude of a new driven signal synthesized from the original driven signals and the unknown one. By making the original driven signal phase shift a degree of π, detection for the same frequency signal can be realized when the synthesized signal is located in the blind angle region, whose feasibility is proven by an experiment that it remains in chaotic status in the case of blind angle but becomes a great period status after the original driven signal's phase is dephased by π. To overcome the drawbacks of qualitative analysis and distinguish effectively different status in signal detection course, a detection statistics based on likelihood-Halmiton system is constructed. On the basis of it, a diagram of detection for any frequency signal is drawn. The key point is to make it as an unknown signal's frequency range where there are two adjacent frequency values whose corresponding detection statistics both located in the range of intermittent chaotic status, while one of them is just corresponding to the maximum value of the detection statistics. By simulations of different circumstances, detection statistics for numerical ranges of chaos, intermittent chaos, and great period is summarized. Furthermore, detection for any frequency signal may be realized by use of the numerical range. It is shown that the proposed method could not only provide quantitative judgment for the system status, but improve the signal detection performance. Also, it could be combined well with the traditional oscillator array method or adaptive step intermittent chaotic oscillator method, which further can improve some existing signal detection methods with Duffing oscillator.
    • Funds: Project supported by the Natural Science Foundation of Shaanxi, China (Grant No. 2014JM8344).
    [1]

    Xu Y C, Yang C L 2010 J. Harbin Institute Technol. 42 446

    [2]

    Chen M J, Ling H L, Liu Y H, Qu S X, Ren W 2014 Chin. Phys. B 23 028701

    [3]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [4]

    Zhang X Y, Guo H X, Wang B H 2007 Chin. Sci. Bull. 52 1906

    [5]

    Shi S H, Yuan Y, Wang H Q, Luo M K 2011 Chin. Phys. Lett. 28 040502

    [6]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [7]

    Wen Z, Li L P 2007 Acta Automat. Sin. 33 536 (in Chinese) [文忠, 李立萍 2007 自动化学报 33 536]

    [8]

    Liu H B, Wu D W, Dai C J, Mao H 2013 Acta Electron. Sin. 41 8 (in Chinese) [刘海波, 吴德伟, 戴传金, 毛虎 2013 电子学报 41 8]

    [9]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [10]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [11]

    Yang M, An J P, Chen N, Wei J C 2011 Trans. Beijing Institute Technol. 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [12]

    Jimenez-Triana A, Tang K S W, Chen G R 2010 IEEE Trans. Circ. Syst.-II: EXPRESS BRIEFS 57 305

    [13]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 57 2053]

    [14]

    Jiang W L, Wu S Q, Zhang J C 2002 J. Yanshan Univ. 26 114 (in Chinese) [姜万录, 吴胜强, 张建成 2002 燕山大学学报 26 114]

    [15]

    15Xu Y C 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [徐艳春 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [16]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999 IEEE Trans. Industr. Electron. 46 440

    [17]

    Vahedi H, Gharehpetian G B, Karrari M 2012 IEEE Trans. Power Delivery 27 1973

    [18]

    Fan J, Zhao W L, Zhang M L, Tan R H, Wang W Q 2014 Acta Phys. Sin. 63 110506 (in Chinese) [范剑, 赵文礼, 张明路, 檀润华, 王万强 2014 物理学报 63 110506]

    [19]

    Wei H D, Gan L, Li L P 2012 J. Univ. Electron. Sci. Technol. China 41 203 (in Chinese) [魏恒东, 甘露, 李立萍 2012 电子科技大学学报 41 203]

    [20]

    Jin T, Zhang H 2011 Sci. China: Inform. Sci. 41 1184 (in Chinese) [金天, 张骅 2011 中国科学: 信息科学 41 1184]

    [21]

    Yuan R S, Ma Y A, Yuan B, Ao P 2014 Chin. Phys. B 23 010505

    [22]

    Lu P, Li Y 2005 Acta Electron. Sin. 33 527 (in Chinese) [路鹏, 李月 2005 电子学报 33 527]

  • [1]

    Xu Y C, Yang C L 2010 J. Harbin Institute Technol. 42 446

    [2]

    Chen M J, Ling H L, Liu Y H, Qu S X, Ren W 2014 Chin. Phys. B 23 028701

    [3]

    Birx D I 1992 IEEE Int. Joint Conf. Neural Networks 22 881

    [4]

    Zhang X Y, Guo H X, Wang B H 2007 Chin. Sci. Bull. 52 1906

    [5]

    Shi S H, Yuan Y, Wang H Q, Luo M K 2011 Chin. Phys. Lett. 28 040502

    [6]

    Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373

    [7]

    Wen Z, Li L P 2007 Acta Automat. Sin. 33 536 (in Chinese) [文忠, 李立萍 2007 自动化学报 33 536]

    [8]

    Liu H B, Wu D W, Dai C J, Mao H 2013 Acta Electron. Sin. 41 8 (in Chinese) [刘海波, 吴德伟, 戴传金, 毛虎 2013 电子学报 41 8]

    [9]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [10]

    Rui G S, Zhang Y, Miao J, Zhang S, Shi T 2012 Acta Electron. Sin. 40 1269 (in Chinese) [芮国胜, 张洋, 苗俊, 张嵩, 史特 2012 电子学报 40 1269]

    [11]

    Yang M, An J P, Chen N, Wei J C 2011 Trans. Beijing Institute Technol. 31 329 (in Chinese) [杨淼, 安建平, 陈宁, 卫景宠 2011 北京理工大学学报 31 329]

    [12]

    Jimenez-Triana A, Tang K S W, Chen G R 2010 IEEE Trans. Circ. Syst.-II: EXPRESS BRIEFS 57 305

    [13]

    Wang Y S, Jiang W Z, Zhao J J, Fan H D 2008 Acta Phys. Sin. 57 2053 (in Chinese) [王永生, 姜文志, 赵建军, 范洪达 2008 物理学报 57 2053]

    [14]

    Jiang W L, Wu S Q, Zhang J C 2002 J. Yanshan Univ. 26 114 (in Chinese) [姜万录, 吴胜强, 张建成 2002 燕山大学学报 26 114]

    [15]

    15Xu Y C 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [徐艳春 2010 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [16]

    Wang G Y, Chen D J, Lin J Y, Chen X 1999 IEEE Trans. Industr. Electron. 46 440

    [17]

    Vahedi H, Gharehpetian G B, Karrari M 2012 IEEE Trans. Power Delivery 27 1973

    [18]

    Fan J, Zhao W L, Zhang M L, Tan R H, Wang W Q 2014 Acta Phys. Sin. 63 110506 (in Chinese) [范剑, 赵文礼, 张明路, 檀润华, 王万强 2014 物理学报 63 110506]

    [19]

    Wei H D, Gan L, Li L P 2012 J. Univ. Electron. Sci. Technol. China 41 203 (in Chinese) [魏恒东, 甘露, 李立萍 2012 电子科技大学学报 41 203]

    [20]

    Jin T, Zhang H 2011 Sci. China: Inform. Sci. 41 1184 (in Chinese) [金天, 张骅 2011 中国科学: 信息科学 41 1184]

    [21]

    Yuan R S, Ma Y A, Yuan B, Ao P 2014 Chin. Phys. B 23 010505

    [22]

    Lu P, Li Y 2005 Acta Electron. Sin. 33 527 (in Chinese) [路鹏, 李月 2005 电子学报 33 527]

  • [1] Jin Jiang-Ming, Xie Tian-Wei, Cheng Hao, Xiao Yue-Peng, D. Michael McFarland, Lu Huan-Cai. Modeling and experimental study of non-reciprocal acoustic energy transfer in vibro-acoustic Duffing oscillator. Acta Physica Sinica, 2022, 71(10): 104301. doi: 10.7498/aps.71.20212181
    [2] Cao Bao-Feng, Li Peng, Li Xiao-Qiang, Zhang Xue-Qin, Ning Wang-Shi, Liang Rui, Li Xin, Hu Miao, Zheng Yi. Detection and parameter estimation of weak pulse signal based on strongly coupled Duffing oscillators. Acta Physica Sinica, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [3] Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu. Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay. Acta Physica Sinica, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [4] Chen Zhi-Guang, Li Ya-An, Chen Xiao. Underwater acoustic weak signal detection based on Hilbert transform and intermittent chaos. Acta Physica Sinica, 2015, 64(20): 200502. doi: 10.7498/aps.64.200502
    [5] Leng Yong-Gang, Lai Zhi-Hui. Generalized parameter-adjusted stochastic resonance of Duffing oscillator based on Kramers rate. Acta Physica Sinica, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [6] Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [7] Tian Xiang-You, Leng Yong-Gang, Fan Sheng-Bo. Parameter-adjusted stochastic resonance of first-order linear system. Acta Physica Sinica, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [8] Fan Jian, Zhao Wen-Li, Wang Wan-Qiang. Study on the weak sinusoidal signal detection property using Duffing chaos system. Acta Physica Sinica, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [9] Liu Hai-Bo, Wu De-Wei, Jin Wei, Wang Yong-Qing. Study on weak signal detection method with Duffing oscillators. Acta Physica Sinica, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [10] Zhou Xue-Xue, Lai Li, Luo Mao-Kang. A new detecting method for periodic weak signals based on fractional order stopping oscillation system. Acta Physica Sinica, 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [11] Xu Xue-Mei, Dai Peng, Yang Bing-Chu, Yin Lin-Zi, Cao Jian, Ding Yi-Peng, Cao Can. Weak photoacoustic signal detection in photoacoustic cell. Acta Physica Sinica, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [12] Leng Yong-Gang, Lai Zhi-Hui, Fan Sheng-Bo, Gao Yu-Ji. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection. Acta Physica Sinica, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [13] Lai Zhi-Hui, Leng Yong-Gang, Sun Jian-Qiao, Fan Sheng-Bo. Weak characteristic signal detection based on scale transformation of Duffing oscillator. Acta Physica Sinica, 2012, 61(5): 050503. doi: 10.7498/aps.61.050503
    [14] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe, Li Zhi. Transient synchronization mutation of ring coupled Duffing oscillators driven by pulse signal. Acta Physica Sinica, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [15] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe. Abrupt change of synchronization of ring coupled Duffing oscillator. Acta Physica Sinica, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [16] He Jing-Bo, Liu Zhong, Hu Sheng-Liang. Detection of weak signal based on the sea clutter scattering. Acta Physica Sinica, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [17] Bao Gang, Narenmandula, Tubuxin, Eredencang. Dynamic behavior of complete synchronization of coupled chaotic oscillators. Acta Physica Sinica, 2007, 56(4): 1971-1974. doi: 10.7498/aps.56.1971
    [18] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcations of safe basins and chaos in softening Duffing oscillator under harmonic and bounded noise excitation. Acta Physica Sinica, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [19] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Meng Guang, Fang Tong. On double-peak probability density functions of a Duffing oscillator under narrow-band random excitations. Acta Physica Sinica, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [20] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcation of safe basins in softening Duffing oscillator under bounded noise excitation. Acta Physica Sinica, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
Metrics
  • Abstract views:  6305
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2014
  • Accepted Date:  19 November 2014
  • Published Online:  05 March 2015

/

返回文章
返回