搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hilbert变换及间歇混沌的水声微弱信号检测方法研究

陈志光 李亚安 陈晓

引用本文:
Citation:

基于Hilbert变换及间歇混沌的水声微弱信号检测方法研究

陈志光, 李亚安, 陈晓

Underwater acoustic weak signal detection based on Hilbert transform and intermittent chaos

Chen Zhi-Guang, Li Ya-An, Chen Xiao
PDF
导出引用
  • 利用Duffing振 子从混沌到间歇混沌的相变及其对策动力和待检测信号频差较小的周期信号的敏感性, 研究了强海洋背景噪声下微弱周期信号的检测. 通过构造混沌振子列的方法对频率未知信号进行扫频, 从而提取待检测信号的频率范围, 最后利用希尔伯特变换, 实现对间歇混沌的包络检测, 并计算出待检测信号的频率. 计算机仿真与实测水声信号处理结果表明, 利用基于希尔伯特变换的间歇混沌振子对水声微弱信号检测, 其检测信噪比比一般的间歇混沌振子提高了至少4.4 dB, 验证了所提方法的有效性.
    In the paper, we analyse the basic dynamical model of the chaotic oscillator by using the theory of intermittent chaos to construct the column of the intermittent chaos, and present an effective method to detect the weak underwater acoustic signal with an unknown frequency. Duffing oscillator is sensitive to phase transformation from chaos to intermittent chaos, whose frequency difference is slightly different from that between the driving force signal and the signal to be detected. By employing this theory, we detect the frequency of the ship signal in ocean background noise. For the detection by using the intermittent chaos, there exists no effective way to estimate the frequency of the signal to be detected, which can only be judged by empirical methods and therefore the man-made error will exist. All of these will affect the consequence of the intermittent chaos and make the practical application difficult. To solve this problem, in this paper, we first study the basic theory of the chaotic system, then construct the simulated signal to examine the system, and finally detect the ship signal. To make the detection feasible, a chaotic oscillator column is considered to sweep through the unknown frequency of the signal. By using this method, we can obtain the frequency range. Finally Hilbert transform is used to detect the envelope of the intermittent chaos followed by measuring the frequency of the envelope through using Fourier spectrum. Thus the frequency of the signal can be calculated by using the function describing the relationship among the driving force signal, ship signal and the envelope. The simulations and the detection processing of the measured acoustic signal are carried out by using the proposed method, which can effectively detect the frequency of the ship signal embedded within strong background noise and also the frequency of the signal to be detected can be calculated, which is conducive to solving the presently existing problem about frequency estimation. Signal-to-noise ratio can be enhanced by 4.4 dB based on the method by using the Hilbert transform compared with by using the method just through using an intermittent chaotic oscillator column, which verifies the effectiveness of the method in this paper.
    • 基金项目: 国家自然科学基金(批准号: 51179157, 51409214, 11574250)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51179157, 51409214, 11574250).
    [1]

    Xia J Z, Liu Y H, Leng Y G, Ge J T 2011 Noise and Vibration Control 31 156 (in Chinese) [夏均忠, 刘远宏, 冷永刚, 葛纪桃 2011噪声与振动控制 31 156]

    [2]

    Li Y, Yang B J 2004 Chaotic Oscillator Detection Introduction (Beijing: Publishing House of Electronics Industy) p29 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (北京: 电子工业出版社) 第29页]

    [3]

    Gao J Z 2005 Weak Signal Detection (Beijing: Tsinghua University Press) p2 (in Chinese) [高晋占 2005 微弱信号检测 (北京: 清华大学出版社)第2页]

    [4]

    Zhou K B, Dou C Q, Chen T 2007 J. Wuhan Univ. Technol. 29 53 (in Chinese) [周凯波, 豆成权, 陈涛 2007 武汉理工大学学报 29 53]

    [5]

    Nie C Y 2009 Chaotic Systems with Weak Signal Detection (Beijing: Tsinghua University Press) p38 (in Chinese) [聂春燕 2009 混沌系统与微弱信号检测(北京: 清华大学出版社) 第38页]

    [6]

    Birx D L 1992 IEEE International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 881

    [7]

    Qin H L, Sun X L, Jin T 2010 10th International Conference on Signal Processing Beijing, China, October 24-28, 2010 p2501

    [8]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [9]

    Lai Z H, Leng Y G, Sun J Q, Feng S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503]

    [10]

    Fan J, Zhao W L, Wang W Q 2013 Acta Phys. Sin. 62 180502 (in Chinese) [范剑, 赵文礼, 王万强 2013 物理学报 62 180502]

    [11]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [12]

    Li Y, Yang B J 2007 Chaotic Vibration Subsystem (L-Y) and Detection (Beijing: Science Press) p57 (in Chinese) [李月, 杨宝俊 2007 混沌阵子系统(L-Y)与检测 (北京: 科学出版社) p57]

    [13]

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) p143 (in Chinese) [刘秉正, 彭建华 2004 非线性动力学 (北京: 高等教育出版社) p143]

    [14]

    Zhu L P, Zhang L Y, Xie W F, Li N 2012 Radio Engineering 42 17 (in Chinese) [朱来普, 张陆勇, 谢文凤, 李楠 2012 无线电工程 42 17]

    [15]

    Wang Y, Chen D J 1999 Trans. Industrial. Electron. 46 440

  • [1]

    Xia J Z, Liu Y H, Leng Y G, Ge J T 2011 Noise and Vibration Control 31 156 (in Chinese) [夏均忠, 刘远宏, 冷永刚, 葛纪桃 2011噪声与振动控制 31 156]

    [2]

    Li Y, Yang B J 2004 Chaotic Oscillator Detection Introduction (Beijing: Publishing House of Electronics Industy) p29 (in Chinese) [李月, 杨宝俊 2004 混沌振子检测引论 (北京: 电子工业出版社) 第29页]

    [3]

    Gao J Z 2005 Weak Signal Detection (Beijing: Tsinghua University Press) p2 (in Chinese) [高晋占 2005 微弱信号检测 (北京: 清华大学出版社)第2页]

    [4]

    Zhou K B, Dou C Q, Chen T 2007 J. Wuhan Univ. Technol. 29 53 (in Chinese) [周凯波, 豆成权, 陈涛 2007 武汉理工大学学报 29 53]

    [5]

    Nie C Y 2009 Chaotic Systems with Weak Signal Detection (Beijing: Tsinghua University Press) p38 (in Chinese) [聂春燕 2009 混沌系统与微弱信号检测(北京: 清华大学出版社) 第38页]

    [6]

    Birx D L 1992 IEEE International Joint Conference on Neural Networks Baltimore, MD, USA, June 7-11, 1992 881

    [7]

    Qin H L, Sun X L, Jin T 2010 10th International Conference on Signal Processing Beijing, China, October 24-28, 2010 p2501

    [8]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [9]

    Lai Z H, Leng Y G, Sun J Q, Feng S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 物理学报 61 050503]

    [10]

    Fan J, Zhao W L, Wang W Q 2013 Acta Phys. Sin. 62 180502 (in Chinese) [范剑, 赵文礼, 王万强 2013 物理学报 62 180502]

    [11]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 物理学报 63 064301]

    [12]

    Li Y, Yang B J 2007 Chaotic Vibration Subsystem (L-Y) and Detection (Beijing: Science Press) p57 (in Chinese) [李月, 杨宝俊 2007 混沌阵子系统(L-Y)与检测 (北京: 科学出版社) p57]

    [13]

    Liu B Z, Peng J H 2004 Nonlinear Dynamics (Beijing: Higher Education Press) p143 (in Chinese) [刘秉正, 彭建华 2004 非线性动力学 (北京: 高等教育出版社) p143]

    [14]

    Zhu L P, Zhang L Y, Xie W F, Li N 2012 Radio Engineering 42 17 (in Chinese) [朱来普, 张陆勇, 谢文凤, 李楠 2012 无线电工程 42 17]

    [15]

    Wang Y, Chen D J 1999 Trans. Industrial. Electron. 46 440

  • [1] 金江明, 谢添伟, 程昊, 肖岳鹏, D.Michael McFarland, 卢奂采. Duffing振子型结构声系统中声能量非互易传递的建模和实验研究. 物理学报, 2022, 71(10): 104301. doi: 10.7498/aps.71.20212181
    [2] 曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅. 基于强耦合Duffing振子的微弱脉冲信号检测与参数估计. 物理学报, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [3] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响. 物理学报, 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [4] 牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强. Duffing振子微弱信号检测盲区消除及检测统计量构造. 物理学报, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [5] 冷永刚, 赖志慧. 基于Kramers逃逸速率的Duffing振子广义调参随机共振研究. 物理学报, 2014, 63(2): 020502. doi: 10.7498/aps.63.020502
    [6] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振. 物理学报, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [7] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [8] 丛超, 李秀坤, 宋扬. 一种基于新型间歇混沌振子的舰船线谱检测方法. 物理学报, 2014, 63(6): 064301. doi: 10.7498/aps.63.064301
    [9] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [10] 刘海波, 吴德伟, 金伟, 王永庆. Duffing振子微弱信号检测方法研究. 物理学报, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [11] 范剑, 赵文礼, 王万强. 基于Duffing振子的微弱周期信号混沌检测性能研究. 物理学报, 2013, 62(18): 180502. doi: 10.7498/aps.62.180502
    [12] 周薛雪, 赖莉, 罗懋康. 基于分数阶可停振动系统的周期未知微弱信号检测方法. 物理学报, 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [13] 冷永刚, 赖志慧, 范胜波, 高毓璣. 二维Duffing振子的大参数随机共振及微弱信号检测研究. 物理学报, 2012, 61(23): 230502. doi: 10.7498/aps.61.230502
    [14] 赖志慧, 冷永刚, 孙建桥, 范胜波. 基于Duffing振子的变尺度微弱特征信号检测方法研究. 物理学报, 2012, 61(5): 050503. doi: 10.7498/aps.61.050503
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe, 李智. 脉冲激励下环形耦合Duffing振子间的瞬态同步突变现象. 物理学报, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [16] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [17] 包 刚, 那仁满都拉, 图布心, 额尔顿仓. 耦合混沌振子系统完全同步的动力学行为. 物理学报, 2007, 56(4): 1971-1974. doi: 10.7498/aps.56.1971
    [18] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌. 物理学报, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [19] 戎海武, 王向东, 徐 伟, 孟 光, 方 同. 窄带随机噪声作用下Duffing振子的双峰稳态概率密度. 物理学报, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [20] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
计量
  • 文章访问数:  7618
  • PDF下载量:  417
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-05-27
  • 刊出日期:  2015-10-05

/

返回文章
返回