Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-pressure structure prediction of Hf-C system and first-principle simulation of their electronic properties

Peng Jun-Hui Zeng Qing-Feng Xie Cong-Wei Zhu Kai-Jin Tan Jun-Hua

Citation:

High-pressure structure prediction of Hf-C system and first-principle simulation of their electronic properties

Peng Jun-Hui, Zeng Qing-Feng, Xie Cong-Wei, Zhu Kai-Jin, Tan Jun-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hafnium carbides (Hf-C system), known as ultra-high temperature ceramics, have attracted growing attention because of their unique features. In this paper, we carry out researches on the stable crystal structures in the Hf-C system at high pressures, using a variable-composition ab initio evolutionary algorithm implemented in the USPEX code. In addition to the ambient-pressure structures HfC (Fm3m), there are two new compounds Hf3C2 and Hf6C5 and two high-pressure structures of HfC. When pressures are lower than 100 GPa, no new structures are found other than those at ambient pressure, and Hf3C2 and Hf6C5 become metastable at 20 GPa and 100 GPa, respectively. At 200 GPa, a new compound Hf2C is found, and the stable structure HfC has changed from Fm3m to C2/m. At 300 GPa, another new compound HfC2 is found. At 400 GPa, the stable structure of HfC has changed again to the space group Pnma. And at 500 GPa, the stable structures are Hf2C, HfC2 and HfC (Pnma), no new structures are found except those at 400 GPa. The composition-pressure phase diagram that shows the pressure range of stable structures in Hf-C system is simulated by calculation of their enthalpies. When the pressures are lower than 15.5 GPa and 37.7 GPa, Hf3C2 and Hf6C5 are stable, respectively, and their space groups are both of C2/m. And Hf2C and HfC2, with space group I4/m and Immm, respectively become stable structures when the pressure is higher than 102.5 GPa and 215.5 GPa, respectively. The phase-transition route of HfC is Fm3mC2/mPnma, and the two phase-transition pressures are 185.5 GPa and 322 GPa, respectively, which are different from the conclusion of Zhao. Then we will show and discuss the newly predicted high-pressure structures and their crystallographic data, such as volume, lattice constants and atom positions. The crystal structures of HfC are described in the literature. The structure of Hf2C contains 12 atoms in the conventional cell, and carbon atoms lie at the center of decahedron consisting of 8 hafnium atoms. In the structure of HfC2, carbon atoms form the quasi-graphite sheets and hafnium atoms lie betweent the two sheets. The dynamical and mechanical stabilities of the high-pressure structures have been verified by calculations of their phonon dispersion curves and elastic constants. And the bulk modulus and shear modulus of HfC2 are larger than those of the other three high-pressure structures. Finally we will study their electronic properties, band structures, density of states (DOS), electron localization functions (ELFs), and the Bader charge analyses of these structures are simulated based on the first-principle. The band structure and density of states show that these four high-pressure structures have weak metallic and strong Hf-C covalent bond. The Bader charge analysis further proves the strong Hf-C covalent bond and weak ionic bond. And ELF shows the existence of CC covalent bond. In summary, the HfC bond shows strong covalence, weak metallicity and ionicity, and the CC bond is covalent.
      Corresponding author: Peng Jun-Hui, pjh1989@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51372203, 51332004), and the Basic Research Foundation of NWPU (Grant No. JCY20130114).
    [1]

    Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A 2002 J. Eur. Ceram. Soc. 22 2757

    [2]

    Savino R, Fumo M D S, Paterna D, Sperpico M 2005 Aerosp. Sci. Technol. 9 151

    [3]

    Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F 2004 J. Mater. Sci. 39 5939

    [4]

    Silvestroni L, Bellosi A, Melandri C, Sciti D, Liu J X, Zhang G J 2011 J. Eur. Ceram. Soc. 31 619

    [5]

    Wu C G, Wu W Y, Gong Y C, Dai B F, He S H, Huang Y H 2015 Acta Phys. Sin. 64 114213 (in Chinese) [吴成国, 武文远, 龚艳春, 戴斌飞, 何苏红, 黄雁华 2015 物理学报 64 114213]

    [6]

    Shi Y, Bai Y, Mou L F, Xiang Q T, Huang Y L, Cao J L 2015 Acta Phys. Sin. 64 116301 (in Chinese) [石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利 2015 物理学报 64 116301]

    [7]

    Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S, Cheng L 2011 Solid State Commun. 151 602

    [8]

    Li H, Zhang L, Zeng Q, Ren H, Guan K, Liu Q, Cheng L 2011 Solid State Commun. 151 61

    [9]

    Brown H L, Armstrong P E, Kempter C P 1966 J. Chem. Phys. 45 547

    [10]

    Smith H G, Gläser W 1970 Phys. Rev. Lett. 25 1611

    [11]

    Zeng Q, Peng J, Oganov A R, Zhu Q, Xie C, Zhang X, Dong D, Zhang L, Cheng L 2013 Phys. Rev. B 88 214107

    [12]

    Zhao Z, Zhou X F, Wang L M, Xu B, He J, Liu Z, Wang H T, Tian Y 2011 Inorg. Chem. 50 9266

    [13]

    Maddox J 1988 Nature 335 201

    [14]

    Hawthorne F C 1990 Nature 345 297

    [15]

    Gavezzotti A 1994 Accounts Chem. Res. 27 309

    [16]

    Ball P 1996 Nature 381 648

    [17]

    Oganov A R, Ma Y, Lyakhov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271

    [18]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [19]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172

    [20]

    Zhu Q, Oganov A R, Salvadó M A, Pertierra P, Lyakhov A O 2011 Phys. Rev. B 83 193410

    [21]

    Oganov A R, Chen J, Gatti C, Ma Y, Glass C W, Liu Z, Yu T., Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [22]

    Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [23]

    Oganov A R 2010 Modern methods of crystal prediction (New York: Wiley-VCR) pp148-164

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [27]

    Li Y L, Luo W, Zeng Z, Kin H Q, Mao H K, Ahuja R 2013 PNAS 110 9289

    [28]

    Cowley R A 1976 Phys. Rev. B 13 4877

    [29]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49

    [30]

    Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig, Germany: B G. Teubner)

    [31]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [32]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1]

    Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A 2002 J. Eur. Ceram. Soc. 22 2757

    [2]

    Savino R, Fumo M D S, Paterna D, Sperpico M 2005 Aerosp. Sci. Technol. 9 151

    [3]

    Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F 2004 J. Mater. Sci. 39 5939

    [4]

    Silvestroni L, Bellosi A, Melandri C, Sciti D, Liu J X, Zhang G J 2011 J. Eur. Ceram. Soc. 31 619

    [5]

    Wu C G, Wu W Y, Gong Y C, Dai B F, He S H, Huang Y H 2015 Acta Phys. Sin. 64 114213 (in Chinese) [吴成国, 武文远, 龚艳春, 戴斌飞, 何苏红, 黄雁华 2015 物理学报 64 114213]

    [6]

    Shi Y, Bai Y, Mou L F, Xiang Q T, Huang Y L, Cao J L 2015 Acta Phys. Sin. 64 116301 (in Chinese) [石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利 2015 物理学报 64 116301]

    [7]

    Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S, Cheng L 2011 Solid State Commun. 151 602

    [8]

    Li H, Zhang L, Zeng Q, Ren H, Guan K, Liu Q, Cheng L 2011 Solid State Commun. 151 61

    [9]

    Brown H L, Armstrong P E, Kempter C P 1966 J. Chem. Phys. 45 547

    [10]

    Smith H G, Gläser W 1970 Phys. Rev. Lett. 25 1611

    [11]

    Zeng Q, Peng J, Oganov A R, Zhu Q, Xie C, Zhang X, Dong D, Zhang L, Cheng L 2013 Phys. Rev. B 88 214107

    [12]

    Zhao Z, Zhou X F, Wang L M, Xu B, He J, Liu Z, Wang H T, Tian Y 2011 Inorg. Chem. 50 9266

    [13]

    Maddox J 1988 Nature 335 201

    [14]

    Hawthorne F C 1990 Nature 345 297

    [15]

    Gavezzotti A 1994 Accounts Chem. Res. 27 309

    [16]

    Ball P 1996 Nature 381 648

    [17]

    Oganov A R, Ma Y, Lyakhov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271

    [18]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [19]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172

    [20]

    Zhu Q, Oganov A R, Salvadó M A, Pertierra P, Lyakhov A O 2011 Phys. Rev. B 83 193410

    [21]

    Oganov A R, Chen J, Gatti C, Ma Y, Glass C W, Liu Z, Yu T., Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [22]

    Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [23]

    Oganov A R 2010 Modern methods of crystal prediction (New York: Wiley-VCR) pp148-164

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063

    [27]

    Li Y L, Luo W, Zeng Z, Kin H Q, Mao H K, Ahuja R 2013 PNAS 110 9289

    [28]

    Cowley R A 1976 Phys. Rev. B 13 4877

    [29]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49

    [30]

    Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig, Germany: B G. Teubner)

    [31]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [32]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1] Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Structural stability, electronic properties, and physical modulation effects of armchair-edged C3B nanoribbons. Acta Physica Sinica, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [2] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] Wang Pan, Zong Yi-Xin, Wen Hong-Yu, Xia Jian-Bai, Wei Zhong-Ming. Electronic properties of two-dimensional Janus atomic crystal. Acta Physica Sinica, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [4] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [6] Song Qing-Gong, Zhao Jun-Pu, Gu Wei-Feng, Zhen Dan-Dan, Guo Yan-Rui, Li Ze-Peng. Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory. Acta Physica Sinica, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [7] Song Qing-Gong, Qin Guo-Shun, Yang Bao-Bao, Jiang Qing-Jie, Hu Xue-Lan. Impurity concentration effects on the structures, ductile and electronic properties of Zr-doped gamma-TiAl alloys. Acta Physica Sinica, 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [8] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [9] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [10] Fan Tao, Zeng Qing-Feng, Yu Shu-Yin. Novel compounds in the hafnium nitride system: first principle study of their crystal structures and mechanical properties. Acta Physica Sinica, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [11] Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang. Computational study of structures and electronic properties of SimGen (m+n=9) clusters. Acta Physica Sinica, 2015, 64(4): 042102. doi: 10.7498/aps.64.042102
    [12] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [13] Ruan Wen, Yu Xiao-Guang, Xie An-Dong, Wu Dong-Lan, Luo Wen-Lang. Structural and electronic properties of the BnY (n=1-11) clusters. Acta Physica Sinica, 2014, 63(24): 243101. doi: 10.7498/aps.63.243101
    [14] Ruan Wen, Xie An-Dong, Yu Xiao-Guang, Wu Dong-Lan. Geometric structure and electronic characteristics of NaBn (n=19) clusters. Acta Physica Sinica, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [15] Zhang Xiu-Rong, Li Yang, Yang Xing. Theoretical study on structural and electronic properties of WnNim(n+m=8) clusters. Acta Physica Sinica, 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [16] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [17] Liu Li-Ren, Lei Xue-Ling, Chen Hang, Zhu Heng-Jiang. Geometry and electronic properties of Bn(n=2—15) clusters. Acta Physica Sinica, 2009, 58(8): 5355-5361. doi: 10.7498/aps.58.5355
    [18] Jing Qun, Zhang Jun, Wang Qing-Lin, Luo You-Hua. First principles study of lowest energy structures and electronic properties of GenB(n=12—19) clusters. Acta Physica Sinica, 2007, 56(8): 4477-4483. doi: 10.7498/aps.56.4477
    [19] Mao Hua-Ping, Wang Hong-Yan, Zhu Zheng-He, Tang Yong-Jian. Geometry and electronic properties of bimetallic AunY(n=1—9) clusters. Acta Physica Sinica, 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [20] Ge Gui-Xian, Jing Qun, Yang Zhi, Yan Yu-Li, Lei Xue-Ling, Zhao Wen-Jie, Wang Qing-Lin, Luo You-Hua. First-principles study of the lowest energy structures and electronic properties of NaBen (n=1—12) clusters. Acta Physica Sinica, 2006, 55(9): 4548-4552. doi: 10.7498/aps.55.4548
Metrics
  • Abstract views:  7346
  • PDF Downloads:  366
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2015
  • Accepted Date:  25 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回