-
Ejecta production from the metal surface under shock-loading is currently a focused issue both at home and abroad. However, the traditional experimental techniques, such as piezoelectric pin, only diagnose the ejected data for low-density ejecta but not for high-density ones, giving a poor understanding of this process. Particularly, when ejecta production increases significantly as the loaded metal melts on release or shock, the measurement carried out by the traditional piezoelectric pin becomes worse, and brings further missing knowledge in the ejecta evolution.In this paper, an Asay-F window designed earlier by the authors based on the traditional Asay-window, is employed to investigate the formation process of the ejecta from the melted Sn metal. As indicated by previous experimental findings on shocked Pb sample, the Asay-F window is a reliable and effective tool for measuring the high-density ejecta by comparing the result with those of the piezoelectric pin. The interface velocity within the Asay-F window measured by Doppler pin system, is obtained. On the basis of momentum conservation condition, the physical quantities of ejecta, such as accumulative areal mass, volume density and velocity, are derived from the interface velocity. By analyzing the experimental data diagnosed by the Asay-F window, which is placed at different offsets from the free surface of Sn sample, the expansion evolution of the ejecta is obtained. Through transforming the dynamic volume density to the static one, the picture of the ejecta density distribution changes with the spatial distance at a specific moment, which is explicitly displayed. It is found that the ejecta density distributions gained from the different offsets at the uniform moment are consistent. As a consequence, the self-similar expansion evolution of the ejecta is experimentally confirmed, which successfully avoids the unclear understanding of this process if only examined by the piezoelectric pin. This experiment may lay the foundation of the formation of the ejecta production for the metal sample subjected to high pressure loading.
-
Keywords:
- ejecta /
- melting /
- self-similar expansion /
- Asay-F winodw
[1] Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284
[2] Asay J R 1978 J. Appl. Phys. 49 6173
[3] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508
[4] Zeller M B, Vogan M W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502
[5] Zeller M B, Vogan M W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Turley W D, Buttler W T 2008 J. Appl. Phys. 103 083521
[6] Zeller M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522
[7] Buttler W T, Zeller M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R, Iverson A, Young J 2007 J. Appl. Phys. 101 063547
[8] Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zeller M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921
[9] Zeller M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102
[10] Chen Y T, Ren G W, Tang T G, Li Q Z, Wang D T, Hu H B 2012 Acta Phys. Sin. 61 206202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波 2012 物理学报 61 206202]
[11] Chen Y T, Hu H B, Tang T G, Li Q Z, Wang R B, Wang D T 2012 Scientia Sinica G. 42 1076 (in Chinese) [陈永涛, 胡海波, 汤铁钢, 李庆忠, 王荣波, 王德田 2012 中国科学G 42 1076]
[12] Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202]
[13] Shao J L, Wang P, He A M, Duan S Q, Qin C S 2013 J. Appl. Phys. 113 153501
[14] Shao J L, Wang P, He A M 2014 J. Appl. Phys. 116 073501
[15] Ren G W, Chen Y T, Tang T G, Li Q Z 2014 J. Appl. Phys. 116 133507
-
[1] Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284
[2] Asay J R 1978 J. Appl. Phys. 49 6173
[3] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508
[4] Zeller M B, Vogan M W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502
[5] Zeller M B, Vogan M W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Turley W D, Buttler W T 2008 J. Appl. Phys. 103 083521
[6] Zeller M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522
[7] Buttler W T, Zeller M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R, Iverson A, Young J 2007 J. Appl. Phys. 101 063547
[8] Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zeller M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921
[9] Zeller M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102
[10] Chen Y T, Ren G W, Tang T G, Li Q Z, Wang D T, Hu H B 2012 Acta Phys. Sin. 61 206202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 李庆忠, 王德田, 胡海波 2012 物理学报 61 206202]
[11] Chen Y T, Hu H B, Tang T G, Li Q Z, Wang R B, Wang D T 2012 Scientia Sinica G. 42 1076 (in Chinese) [陈永涛, 胡海波, 汤铁钢, 李庆忠, 王荣波, 王德田 2012 中国科学G 42 1076]
[12] Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese) [陈永涛, 任国武, 汤铁钢, 胡海波 2013 物理学报 62 116202]
[13] Shao J L, Wang P, He A M, Duan S Q, Qin C S 2013 J. Appl. Phys. 113 153501
[14] Shao J L, Wang P, He A M 2014 J. Appl. Phys. 116 073501
[15] Ren G W, Chen Y T, Tang T G, Li Q Z 2014 J. Appl. Phys. 116 133507
Catalog
Metrics
- Abstract views: 5978
- PDF Downloads: 195
- Cited By: 0