Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Light intensity distribution of high-power laser beams on target plane under different focus system of 22 beam array

Sun Xiao-Yan Lei Ze-Min Lu Xing-Qiang Lü Feng-Nian Zhang Zhen Fan Dian-Yuan

Citation:

Light intensity distribution of high-power laser beams on target plane under different focus system of 22 beam array

Sun Xiao-Yan, Lei Ze-Min, Lu Xing-Qiang, Lü Feng-Nian, Zhang Zhen, Fan Dian-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Large aperture high-power laser drivers usually focus the high power laser beams in 22 quads to the target chamber center in order to increase the light intensity on the target plane. The large aperture wedged focus lenses are the core components in the focus system of quadruplets of beams, and it is thought possible to use four two-dimensional off-axis wedged focus lenses as four sub-lenses to make up a larger aperture wedged focus lens in form to focus the four beams. Given that the large aperture two-dimensional off-axis wedged focus lenses are processed and used difficultly, the wedged focus lenses are divided into three categories: the two-dimensional off-axis wedged focus lenses, the one-dimensional off-axis wedged focus lenses, and the non-off-axis wedged focus lenses. On the basis of the three modes of the wedged focus lenses and the corresponding specific incidence angles of each sub-beam, the three focus schemes for the 22 beam array are put forward to comparatively research the light intensity distribution on the target plane. Research results show that from a perspective of the coherence among the four sub-beams, the phase factors of each sub-beam respectively introducing by the three focus systems with the two-dimensional off-axis, one-dimensional off-axis, and non-off-axis wedged focus lenses are asymmetric, asymmetric and symmetric inside each sub-beam, and symmetric, asymmetric and symmetric among the four sub-beams. Therefore, the wave front consistency of the four sub-beams decreases in the order of the focus systems with the non-off-axis, two-dimensional off-axis, and one-dimensional off-axis wedged focus lenses. The focus schemes with the non-off-axis wedged focus lenses for 22 beam array can get the narrowest main-lobe, the strongest peak-value intensity, the highest energy concentration ratio on the target plane, followed by the one-dimensional off-axis and two-dimensional off-axis wedged focus lenses. The off-axis mode of the wedged focus lenses not only increases the complexity in the course of processing and using, but also increases the main-lobe size, decreases the peak-value intensity and the energy concentration ratio, which obtains a weaker focusing characteristics than that of the non-off-axis mode of the wedged focus lenses. Research results can provide an important reference for the design of the focus system in the target area of high-power laser drivers.
      Corresponding author: Lu Xing-Qiang, xingqianglu@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60707019).
    [1]

    Hunt J T 1999 UCRL-ID-138120-98 [R] National Ignition Facility Performance Review, Lawrence Livermore National Laboratory, Livermore USA

    [2]

    Ebrardt J, Chaput J M 2008 J. Phys.: Conference Series 112 032005

    [3]

    Zheng W G, Zhang X M, Wei X F, Jing F, Sui Z, Zheng K X, Yuan X D, Jiang X D, Su J Q, Zhou H, Li M Z, Wang J J, Hu D X, He S B, Xiang Y, Peng Z T, Feng B, Guo L F, Li X Q, Zhu Q H, Yu H W, You Y, Fan D Y, Zhang W Y 2008 J. Phys.: Conference Series 11 2 032009

    [4]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [5]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 SPIE 5341 180

    [6]

    Su R T, Zhou P, Wang X L, Ji X, Xu X J 2012 Acta Phys. Sin. 61 084206 (in Chinese) [粟荣涛, 周朴, 王小林, 冀翔, 许晓军 2012 物理学报 61 084206]

    [7]

    Huang Z H, Wei X F, Li M Z, Wang J J, Lin H H, Xu D P, Deng Y, Zhang R 2012 Appl. Opt. 51 1546

    [8]

    Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y Q, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 044204

    [9]

    Tan Y, Li X Y 2014 Acta Phys. Sin. 63 094202 (in Chinese) [谭毅, 李新阳 2014 物理学报 63 094202]

    [10]

    Xiao R, Hou J, Jiang Z F 2008 Acta Phys. Sin. 57 853 (in Chinese) [肖瑞, 侯静, 姜宗福 2008 物理学报 57 853]

    [11]

    L B D, Hong M 1999 Opt. Commun. 171 185

    [12]

    Li F Q, Han W, Wang F, Zhang X M, Wei X F, Feng B, Xiang Y, Jia H T, Li K Y Laser Optoelectronics Progress 50 060002 (in Chinese) [李富全, 韩伟, 王芳, 张小民, 魏晓峰, 冯斌, 向勇, 贾怀庭, 李恪宇 2013 激光与光电子学进展 50 060002]

    [13]

    Born M, Wolf E 1999 Principles of Optics (London: Cambridge University Press) pp412-430

  • [1]

    Hunt J T 1999 UCRL-ID-138120-98 [R] National Ignition Facility Performance Review, Lawrence Livermore National Laboratory, Livermore USA

    [2]

    Ebrardt J, Chaput J M 2008 J. Phys.: Conference Series 112 032005

    [3]

    Zheng W G, Zhang X M, Wei X F, Jing F, Sui Z, Zheng K X, Yuan X D, Jiang X D, Su J Q, Zhou H, Li M Z, Wang J J, Hu D X, He S B, Xiang Y, Peng Z T, Feng B, Guo L F, Li X Q, Zhu Q H, Yu H W, You Y, Fan D Y, Zhang W Y 2008 J. Phys.: Conference Series 11 2 032009

    [4]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress 50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [5]

    Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 SPIE 5341 180

    [6]

    Su R T, Zhou P, Wang X L, Ji X, Xu X J 2012 Acta Phys. Sin. 61 084206 (in Chinese) [粟荣涛, 周朴, 王小林, 冀翔, 许晓军 2012 物理学报 61 084206]

    [7]

    Huang Z H, Wei X F, Li M Z, Wang J J, Lin H H, Xu D P, Deng Y, Zhang R 2012 Appl. Opt. 51 1546

    [8]

    Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y Q, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 044204

    [9]

    Tan Y, Li X Y 2014 Acta Phys. Sin. 63 094202 (in Chinese) [谭毅, 李新阳 2014 物理学报 63 094202]

    [10]

    Xiao R, Hou J, Jiang Z F 2008 Acta Phys. Sin. 57 853 (in Chinese) [肖瑞, 侯静, 姜宗福 2008 物理学报 57 853]

    [11]

    L B D, Hong M 1999 Opt. Commun. 171 185

    [12]

    Li F Q, Han W, Wang F, Zhang X M, Wei X F, Feng B, Xiang Y, Jia H T, Li K Y Laser Optoelectronics Progress 50 060002 (in Chinese) [李富全, 韩伟, 王芳, 张小民, 魏晓峰, 冯斌, 向勇, 贾怀庭, 李恪宇 2013 激光与光电子学进展 50 060002]

    [13]

    Born M, Wolf E 1999 Principles of Optics (London: Cambridge University Press) pp412-430

  • [1] Bu MengXu, Gu WenTing, Li BoYi, Zhu QiuChen, Jiang Xue, Ta DeAn, Liu Xin. Multifrequency transcranial focusing based on acoustic lensing. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.73.20241123
    [2] Xu Ping, Li Xiong-Chao, Xiao Yu-Fei, Yang Tuo, Zhang Xu-Lin, Huang Hai-Xuan, Wang Meng-Yu, Yuan Xia, Xu Hai-Dong. Design and research of long-infrared dual-wavelength confocal metalens. Acta Physica Sinica, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [3] Chen Kang, Ma Zhi-Yuan, Zhang Ming-Ming, Dou Jian-Tai, Hu You-You. Propagation properties of partially coherent power-exponent-phase vortex beam. Acta Physica Sinica, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [4] The Propagation Characteristics of Partially Coherent Power-Exponent-Phase-Vortex Beam*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211411
    [5] Tian Zi-Cong, Guo Yi-Min, Hu Chen-Yan, Wang Hui-Qin, Lu Cui-Cui. Broadband efficient focusing on-chip integrated nano-lens. Acta Physica Sinica, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [6] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [7] Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Focusing performance of hard X-ray single Kinoform lens. Acta Physica Sinica, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [8] Li Yang, Zhu Zhu-Qing, Wang Xiao-Lei, Gong Li-Ping, Feng Shao-Tong, Nie Shou-Ping. Propagation evolution of the off-axis ellipse vector beam. Acta Physica Sinica, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [9] Chen Xue-Qiong, Chen Zi-Yang, Pu Ji-Xiong, Zhu Jian-Qiang, Zhang Guo-Wen. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects. Acta Physica Sinica, 2013, 62(4): 044213. doi: 10.7498/aps.62.044213
    [10] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [11] Li Min, Zhang Zhi-You, Shi Sha, Du Jing-Lei. Optimization and analysis of the structural parameters of subwavelength metal focusing lens. Acta Physica Sinica, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [12] Liu Hong-Yao, Lü Qiang, Luo Hai-Lu, Wen Shuang-Chun. Focusing properties of the uniaxially anisotropic metamaterial slab lens. Acta Physica Sinica, 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [13] Wu Peng-Ju, Li Yu-De, Lin Xiao-Yan, Liu An-Dong, Sun Tian-Xi. Simulation of x-ray transmission through a capillary. Acta Physica Sinica, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [14] Guo Hong-Lian, Cheng Bing-Ying, Zhang Dao-Zhong. Photic intensity distribution simulations of biological tissues with polystyrene spheres. Acta Physica Sinica, 2003, 52(2): 324-327. doi: 10.7498/aps.52.324
    [15] Zhou Qing, Zhu Xinag, Li Hong-Fu. . Acta Physica Sinica, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [16] SHE WEI-LONG, HE HUI-RONG, WANG HE-ZHOU, YANG PEI-QING, YU ZHEN-XIN, MO DANG. . Acta Physica Sinica, 1995, 44(1): 87-91. doi: 10.7498/aps.44.87
    [17] CHEN YAN-SONG, LI DE-HUA. . Acta Physica Sinica, 1995, 44(10): 1558-1562. doi: 10.7498/aps.44.1558
    [18] TAO SHI-QUAN, LING DE-HONG. SPECTROGRAPH WITH A HOLOGRAPHIC LENS AS DISPERSING/FOCUCING ELEMENT. Acta Physica Sinica, 1984, 33(3): 285-293. doi: 10.7498/aps.33.285
    [19] ZHOU LI-WEI, AI KE-CONG, PAN SHUN-CHEN. ON ABERRATION THEORY OF THE COMBINED ELECTROMAGNETIC FOCUSSING CATHODE LENSES. Acta Physica Sinica, 1983, 32(3): 376-392. doi: 10.7498/aps.32.376
    [20] LIU DE-SEN. CHROMATIC ABERRATION ANALYSIS OF THE SELFOC-ROD LENSES. Acta Physica Sinica, 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
Metrics
  • Abstract views:  6906
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2015
  • Accepted Date:  02 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回