Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic transport properties of oligo phenylene ethynylene molecule modified by the (CH3)2 and (NH2)2 groups

Xin Jian-Guo Yang Chuan-Lu Wang Mei-Shan Ma Xiao-Guang

Citation:

Electronic transport properties of oligo phenylene ethynylene molecule modified by the (CH3)2 and (NH2)2 groups

Xin Jian-Guo, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The modification effects of the groups (CH3)2 and (NH2)2 on the oligo phenylene ethynylene (OPE) molecules with single and double S atoms connected to the two electrodes are investigated by the density functional theory and non-equilibrium Green function. The modified OPE molecule is optimized and used to build a two-probe system with Au electrodes. Then the two-probe system is fully relaxed to obtain a stable structure. The electronic transport properties of the two-probe system are also calculated with the non-equilibrium Green function method. The calculation results show that both the modified groups and the bridge atoms can lead to the switch effect, the negative differential resistance behavior, and the rectifying behavior for the two-probe system. When molecules are connected with single S atom at one end, both the (NH2)2-OPE and the (CH3)2-OPE molecules show the rectifying behavior. However, the (NH2)2-OPE also shows a switch effect at larger voltage because there is current when the negative bias is over 1.3 V, while the (CH3)2-OPE molecule demonstrates a complete rectifying behavior because it is hardly conductive in the whole positive bias area. The current of OPE molecule without modification group always increases with the increase of voltage. Therefore, it is only a resistance. These results are different from that of NO2-OPE-NH2 molecule which shows a negative differential resistance behavior. For the case of the molecule connected with S atoms at both ends, the (NH2)2-OPE(S) and (CH3)2-OPE(S) models show negative differential resistance behaviors in the negative bias range. It is found that both (NH2)2-OPE and (CH3)2-OPE molecules demonstrate the negative differential resistance behaviors when they are connected with S atoms bridge at both ends. However, the current of the molecule with one S atom at one end is about two-order magnitude lower than that of the molecule with S atoms at both ends. It is shown that S atom acting as a bridge can significantly affect the characteristic of current-voltage. The mechanisms for the various characteristics of the electronic transport properties are explored by analyzing the projection orbit electron distribution, the transmission spectrum, and the density of states under the different bias voltages. For (NH2)2-OPE molecule with a single S atom at one end in the negative bias range, only the lowest unoccupied molecular orbital (LUMO) can transfer electron with low bias, but both highest occupied molecular orbital (HOMO) and LUMO can be conductive with high bias, which results in the switch effect. In the positive bias range, both HOMO and LUMO cannot be conductive with low bias, while LUMO can be conductive with high bias, which results in the switch behavior. For the case of (NH2)2-OPE molecule with one S atom at each end, only the HOMO can transfer electron in the low bias range, while the LUMO can be conductive at high positive bias, but both HOMO and LUMO cannot be conductive in high negative bias range, which leads to the non-symmetric negative differential resistance effect in the whole bias range. A similar analysis of the difference between HOMO and LUMO can be used to understand the characteristics of the current-voltage of (CH3)2-OPE. Considering the fact that the different modification groups can lead to various current-voltage properties of OPE molecule, the modified OPE molecule is a promising candidate for designing molecule device.
      Corresponding author: Yang Chuan-Lu, yangchuanlu@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374132, 11574125) and the Taishan Scholars Project of Shandong Province, China (Grant No. ts201511055).
    [1]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J, Williams R S, Heath J R 1999 Science 285 391

    [4]

    Gonzalez C, Simo'n-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [5]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解世杰, 赵明文 2008 物理学报 57 3148]

    [6]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 物理学报 59 2010]

    [7]

    Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [8]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nat. Nanotechnol. 3 569

    [9]

    Wang L J, Zhou K G, Tan L, Wang H, Shi Z F, Wu G P, Xu Z G, Cao X P, He H X, Zhang H L 2011 Chem. Eur. J. 17 8414

    [10]

    Ma J, Yang C L, Wang L Z, Wang M S, Ma X G 2014 Physica B 434 32

    [11]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese) [陈小春, 杨君, 周艳红, 许英 2009 物理学报 58 3064]

    [12]

    Delley B 1990 J. Chem. Phys. 92 508

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [15]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Mat. 14 2745

    [16]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [17]

    Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R 2002 J. Phys. Chem. B 106 12727

    [18]

    Yang L H, Yang C L, Wang M S, Ma X G 2015 Phys. Lett. A 379 1726

    [19]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [20]

    Stokbro K 2008 J. Phys. 20 064216

  • [1]

    Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J, Williams R S, Heath J R 1999 Science 285 391

    [4]

    Gonzalez C, Simo'n-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414

    [5]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解世杰, 赵明文 2008 物理学报 57 3148]

    [6]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese) [安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 物理学报 59 2010]

    [7]

    Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157

    [8]

    Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C, Calame M 2008 Nat. Nanotechnol. 3 569

    [9]

    Wang L J, Zhou K G, Tan L, Wang H, Shi Z F, Wu G P, Xu Z G, Cao X P, He H X, Zhang H L 2011 Chem. Eur. J. 17 8414

    [10]

    Ma J, Yang C L, Wang L Z, Wang M S, Ma X G 2014 Physica B 434 32

    [11]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese) [陈小春, 杨君, 周艳红, 许英 2009 物理学报 58 3064]

    [12]

    Delley B 1990 J. Chem. Phys. 92 508

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [15]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Mat. 14 2745

    [16]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [17]

    Tachibana M, Yoshizawa K, Ogawa A, Fujimoto H, Hoffmann R 2002 J. Phys. Chem. B 106 12727

    [18]

    Yang L H, Yang C L, Wang M S, Ma X G 2015 Phys. Lett. A 379 1726

    [19]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [20]

    Stokbro K 2008 J. Phys. 20 064216

  • [1] Xing Hai-Ying, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying, Ru Jin-Dou. Regulation and mechanism of graphene electrode bending on negative differential resistance of 2-phenylpyridine molecular devices. Acta Physica Sinica, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] Yang Jun, Zhang Xi, Miao Ren-De. Barrier-dependent tunneling magnetoresistance reversal effect in spin field effect transistors. Acta Physica Sinica, 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [10] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] Guo Chao, Zhang Zhen-Hua, Pan Jin-Bo, Zhang Jun-Jun. Effects of end groups on the rectifying performance in D-B-A molecular rectifiers. Acta Physica Sinica, 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [13] Pan Jin-Bo, Zhang Zhen-Hua, Qiu Ming, Guo Chao. Regulating effect of a bonding bridge on rectifying performance in molecular rectifiers. Acta Physica Sinica, 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Wan Ji-Yu, Jin Ke-Xin, Tan Xing-Yi, Chen Chang-Le. Transport and rectification properties of Pr0.5Ca0.5MnO3/Si heterojunction. Acta Physica Sinica, 2010, 59(11): 8137-8141. doi: 10.7498/aps.59.8137
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [18] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] Zhang Zhi-Yong, Wang Tai-Hong. Multipeak negative-differential-resistance device by combining SET and MOSFET. Acta Physica Sinica, 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
Metrics
  • Abstract views:  6056
  • PDF Downloads:  167
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2016
  • Accepted Date:  17 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回