-
Nonorthogonal coded agreements and decoy state method can effectively protect the photon number against splitting attack. Owing to the fact that the component of single-photon in the coherent-state superposition (CSS) is as high as 90%, CSS has recently emerged as an alternative to single-photon qubits for quantum information processing and metrology. The approximate CSS of small amplitudes is generated by the subtraction of photons from a squeezed vacuum state, and the approximate CSS of large amplitude is generated from Fock state by using a single homodyne detection. Here, we combine both of the methods and propose a new protocol by using the CSS as a light source. We derive the secure key generation rate, the lower bound of count rate and upper bound of error rate of single-photon. We simulate the curves relationship between secure key generation rate and safety transmission distance in the case of an infinite number of decoy states by using matlab. The parameters are given according to the Gobby-Yuan-Shields (GYS) experiment. We infer that the safety transmission distance achieves 147.4 km and the secure key generation rate is much higher than those of other schemes. We also simulate the relationship between key generation rate and safety transmission distance in the case of a limited number of decoy states by using matlab. The parameters are given according to the GYS experiment too. When the N is 1010, the safety transmission distance achieves 144 km; when the N is 109, the safety transmission distance achieves 139 km; when the N is 108, the safety transmission distance achieves 125.9 km. In this paper, we propose the use of CSS as the light source. Combining SARG04 agreements and decoy state, the scheme has the following advantages: first, the scheme which combines SARG04 agreements and decoy state method can effectively resist PNS; second, nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions has a longer safety transmission distance and higher secure key generation rate than nonorthogonal decoy-state quantum key distribution based on weak coherent pulse and nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source; third, nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions is easier to prepare, which just needs one decoy state, than other schemes that require several decoy states. Obviously, our scheme can enhance the performance of quantum key distribution. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions will have a very good application with the further development of preparation technology of CSS.
-
Keywords:
- coherent-state superpositions /
- key generation rate /
- count rate /
- error rate
[1] Bennett C H, Brassard 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330
[5] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[6] Scarani V, Acin A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901
[7] Fung C H F, Tamaki K, Lo H K 2006 Phys. Rev. A 73 012337
[8] Li J B, Fang X M 2006 Chin. Phys. Lett. 23 1375
[9] Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775
[10] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
[11] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
[12] Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309
[13] Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304
[14] Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]
[15] Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]
[16] Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451
[17] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
[18] Andersen U L, Ralph T C 2013 Phys. Rev. Lett. 111 050504
[19] Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308
[20] van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313
[21] Sangouard N, Gisin N, Laurat J, Tualle Brouri R, Grangier P 2010 J. Opt. Soc. Am. B 27 137
[22] Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501
[23] Munro W J, Nemoto K, Milburn G J, Braunstein S L 2002 Phys. Rev. A 66 023819
[24] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mlmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
[25] Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784
[26] Yin H L, Yao F, Chen Z B 2016 Phys. Rev. A 93 032316
[27] Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762
-
[1] Bennett C H, Brassard 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
[4] Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330
[5] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[6] Scarani V, Acin A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901
[7] Fung C H F, Tamaki K, Lo H K 2006 Phys. Rev. A 73 012337
[8] Li J B, Fang X M 2006 Chin. Phys. Lett. 23 1375
[9] Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775
[10] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
[11] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
[12] Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309
[13] Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304
[14] Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]
[15] Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]
[16] Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451
[17] Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503
[18] Andersen U L, Ralph T C 2013 Phys. Rev. Lett. 111 050504
[19] Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308
[20] van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313
[21] Sangouard N, Gisin N, Laurat J, Tualle Brouri R, Grangier P 2010 J. Opt. Soc. Am. B 27 137
[22] Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501
[23] Munro W J, Nemoto K, Milburn G J, Braunstein S L 2002 Phys. Rev. A 66 023819
[24] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mlmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
[25] Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784
[26] Yin H L, Yao F, Chen Z B 2016 Phys. Rev. A 93 032316
[27] Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762
Catalog
Metrics
- Abstract views: 6326
- PDF Downloads: 257
- Cited By: 0