Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of atmospheric turbulence on coherent detection performance of space coherent optical communication

Liu Yu-Tao Xu Miao Fu Xing-Hu Fu Guang-Wei

Citation:

Influence of atmospheric turbulence on coherent detection performance of space coherent optical communication

Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei
PDF
HTML
Get Citation
  • Space coherent optical communication technology is considered to be an important way to overcome the bottleneck in current high-speed space communication. However, atmospheric turbulence seriously limits its realization. Based on the Huygens-Fresnel principle and the low-frequency compensation power spectrum inversion method, this work first investigates the random distribution characteristics of the amplitude and phase of a Gaussian beam after it has been transmitted through atmospheric turbulence. Then, using the coherent mixing efficiency and communication bit error rate model, the influence of atmospheric turbulence on the performance of spatial coherent optical communication systems is obtained. Finally, a laser heterodyne detection experimental system is built to quantitatively study the influence of atmospheric turbulence on the coherent detection performance of spatial coherent optical communication. The conclusions drawn from this study are as follows. 1) The spatial phase distortion caused by the weak turbulence channel is relatively small and will hardly affect the light intensity distribution characteristics of the Gaussian beam. In the case of weak turbulence, the influence of weak turbulence on the performance of coherent optical communication system is almost negligible. The communication bit error rate will decrease rapidly with the increase of the number of single bit data photons. The communication signal-to-noise ratio can be better than 10–5 when the number of single-bit photons is greater than 10. 2) Moderate turbulence will change the intensity distribution characteristics of the Gaussian beam, but will not cause a serious shift in the center of the spot. Under moderate turbulence conditions, the coherent mixing efficiency decreases rapidly as the turbulence intensity continues to increase, but the communication bit error rate still decreases rapidly with the increase of the number of single bit data photons. At this time, increasing the number of single-bit photons can suppress the negative influence of moderate intensity turbulence on the performance of coherent optical communication systems. 3) Strong turbulence will cause severe spatial phase distortion of the beam, destroy the consistency of the light intensity distribution, and cause a serious shift in the center of the spot. Under strong turbulence conditions, the coherent mixing efficiency of coherent optical communication systems approaches zero, and increasing the number of single bit data photons cannot significantly reduce the bit error rate, seriously affecting the quality of coherent optical communication. Atmospheric turbulence is an important limiting factor for developing space coherent optical communication. This study can provide useful references for evaluating the performance of space coherent optical communication systems.
      Corresponding author: Liu Yu-Tao, ytliu@ysu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFC1407904), the Natural Science Foundation of Hebei Province, China (Grant No. F2022203011), the Science and Technology Project of Education Department of Hebei Province, China (Grant No. QN2022112), and the Open Fund Project of Key Laboratory of Ocean Observation Technology (Grant No. 2021klootA07).
    [1]

    李锐, 林宝军, 刘迎春, 沈苑, 董明佶, 赵帅, 孔陈杰, 刘恩权, 林夏 2023 红外与激光工程 52 20220393Google Scholar

    Li R, Lin B J, Liu Y C, Shen Y, Dong M J, Zhao S, Kong C J, Liu N Q, Lin X 2023 Infrared Laser Eng. 52 20220393Google Scholar

    [2]

    张家铭 2023 光通信技术 47 37Google Scholar

    Zhang J M 2023 Opt. Commun. Technol. 47 37Google Scholar

    [3]

    Zhang T, Mao S, Fu Q, Cao G X, Su S, Jiang H L 2017 J. Laser Appl. 29 012013Google Scholar

    [4]

    Fu Q, Liu X, Jiang H L, Hu Y, Jiang L 2014 SPIE 9300 930029

    [5]

    高铎瑞, 谢壮, 马榕, 汪伟, 白兆峰, 郏帅威, 邵雯, 谢小平 2021 光子学报 50 0406001

    Gao D R, Xie Z, Ma R, Wang W, Bai Z F, Jia S W, Shao W, Xie X P 2021 Acta Photon. Sin. 50 0406001

    [6]

    Israel D J, Edwards B L, Staren J W 2017 IEEE Aerospace Conference Proceedings Big Sky, MT, USA, March 4–11, 2017 pp1–6

    [7]

    Robinson B S, Shih T, Khatri F I, Boroson D M, Hogan M J 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, February 15, 2018 p105240S

    [8]

    Gregory M, Heine F, Kämpfner H, Lange R, Saucke K, Sterr U, Meyer R 2010 Free-Space Laser Communication Technologies XXII, San Francisco, USA, February 26, 2010 75870E

    [9]

    Hauschildt H, le Gallou N, Mezzasoma S, Ludwig Moeller H, Perdigues Armengol J, Witting M, Herrmann J, Carmona C 2018 International Conference on Space Optics, Chania, GREECE, October 09–12, 2018 p111800X

    [10]

    Satoh Y, Miyamoto Y, Takano Y, Yamakawa S, Kohata H 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Okinawa, JAPAN, November 14–16, 2017, p240

    [11]

    Munemasa Y, Kolev D R, Fuse T, Kubo-oka T, Kunimori H, Carrasco-Casado A, Takenaka H, Saito Y, Trinh P V, Suzuki K, Koyama Y, Toyoshima M 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, January 29–30, 2018 p105240F

    [12]

    任建迎, 孙华燕, 张来线, 张天齐 2019 激光与红外 49 143Google Scholar

    Ren J Y, Sun H Y, Zhang L X, Zhang T Q 2019 Laser Infr. 49 143Google Scholar

    [13]

    崔岳, 唐勇 2020 国际太空 7 38Google Scholar

    Cui Y, Tang Y 2020 Space Int. 7 38Google Scholar

    [14]

    Wan Z S, Shen Y J, Wang Z Y, Shi Z J, Liu Q, Fu X 2022 Light Sci. Appl. 11 144Google Scholar

    [15]

    Wang L Q, Wang J C, Tang X Y, Chen H, Chen X 2022 Opt. Express 30 7854Google Scholar

    [16]

    李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽⋅阿不都克热木, 刘世韦 2022 物理学报 71 140201Google Scholar

    Li Y L, Mei H P, Ren Y C, Zhang J X, Tao Z W, Aizeziguli A, Liu S W 2022 Acta Phys. Sin. 71 140201Google Scholar

    [17]

    Yang Y F, Yan C X, Hu C H, Wu C J 2017 Opt. Express 25 7567Google Scholar

    [18]

    Salem M, Rolland J P 2010 J. Opt. Soc. Am. A 27 1111Google Scholar

    [19]

    Liu Y, Gao M, Zeng X, Liu F, Bi W 2021 Opt. Laser Eng. 146 106694Google Scholar

    [20]

    Geng J N, Feng Z J, Cao C Q, Feng S M, Xu X K, Shang Y J, Wu Z Y, Yan X 2021 Opt. Express 29 39016Google Scholar

    [21]

    Zheng D H, Li Y, Zhou H H, Bian Y M, Yang C, Li W, Qiu J F, Guo H X, Hong X B, Zuo Y, Giles I P, Tong W J, Wu J 2018 Opt. Express 26 28879Google Scholar

    [22]

    Zhang H, Xu L, Guo Y F, Cao J T, Liu W, Yang L Q 2022 Opt. Express 30 7477Google Scholar

    [23]

    孔英秀, 柯熙政, 杨媛 2015 激光与光电子学进展 52 95

    Kong Y X, Ke X Z, Yang Y 2015 Laser Optoelectron Prog. 52 95

    [24]

    Liu C, Chen S Q, Li X Y, Xian H 2014 Opt. Express 22 15554Google Scholar

    [25]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingha: SPIE) pp157–163

    [26]

    艾则孜姑丽⋅阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充 2022 物理学报 71 234201Google Scholar

    Aizeziguli A, Tao Z W, Liu S W, Li Y L, Rao R Z, Ren Y C 2022 Acta Phys. Sin. 71 234201Google Scholar

    [27]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan Z Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [28]

    闫旭, 张文睿, 曹长庆, 冯喆珺 2021 光子学报 50 312

    Yan X, Zhang W R, Cao C Q, Feng Z J 2021 Acta Photonica Sin. 50 312

    [29]

    Wu Z Y, Cao C Q, Feng Z J, Wu X N, Duan C X 2023 Opt. Lett. 48 5257Google Scholar

  • 图 1  相干探测系统示意图

    Figure 1.  Schematic illustration of the coherent detection scheme.

    图 2  大气湍流相位屏仿真结果 (a)弱湍流$ C_n^2 $=2×10–17 m–2/3; (b)中湍流$ C_n^2 $=2×10–15 m–2/3; (c)强湍流$ C_n^2 $=2×10–13 m–2/3

    Figure 2.  Simulation results of atmospheric turbulence phase screen: (a) Weak turbulence $ C_n^2 $=2×10–17 m–2/3; (b) moderate turbulence $ C_n^2 $=2×10–15 m–2/3; (c) strong turbulence $ C_n^2 $=2×10–13 m–2/3.

    图 3  大气湍流扰动下的光强分布仿真结果 (a)弱湍流$ C_n^2 $=2×10–17 m–2/3; (b)中湍流$ C_n^2 $=2×10–15 m–2/3; (c)强湍流$ C_n^2 $=2×10–13 m–2/3

    Figure 3.  Simulation results of light intensity distribution under atmospheric turbulence disturbance: (a) Weak turbulence $ C_n^2 $=2×10–17 m–2/3; (b) moderate turbulence $ C_n^2 $=2×10–15 m–2/3; (c) strong turbulence $ C_n^2 $=2×10–13 m–2/3.

    图 4  大气湍流扰动下的相干混频效率

    Figure 4.  Results of coherent mixing efficiency under atmospheric turbulence disturbance.

    图 5  大气湍流扰动下的通信误码率随单比特光子数的变化曲线

    Figure 5.  Results of coherent mixing efficiency under atmospheric turbulence disturbance.

    图 6  光外差探测系统

    Figure 6.  Optical heterodyne detection system.

    图 7  大气湍流扰动下的相干混频效率的实验结果

    Figure 7.  Experiment results of coherent mixing efficiency under atmospheric turbulence disturbance.

  • [1]

    李锐, 林宝军, 刘迎春, 沈苑, 董明佶, 赵帅, 孔陈杰, 刘恩权, 林夏 2023 红外与激光工程 52 20220393Google Scholar

    Li R, Lin B J, Liu Y C, Shen Y, Dong M J, Zhao S, Kong C J, Liu N Q, Lin X 2023 Infrared Laser Eng. 52 20220393Google Scholar

    [2]

    张家铭 2023 光通信技术 47 37Google Scholar

    Zhang J M 2023 Opt. Commun. Technol. 47 37Google Scholar

    [3]

    Zhang T, Mao S, Fu Q, Cao G X, Su S, Jiang H L 2017 J. Laser Appl. 29 012013Google Scholar

    [4]

    Fu Q, Liu X, Jiang H L, Hu Y, Jiang L 2014 SPIE 9300 930029

    [5]

    高铎瑞, 谢壮, 马榕, 汪伟, 白兆峰, 郏帅威, 邵雯, 谢小平 2021 光子学报 50 0406001

    Gao D R, Xie Z, Ma R, Wang W, Bai Z F, Jia S W, Shao W, Xie X P 2021 Acta Photon. Sin. 50 0406001

    [6]

    Israel D J, Edwards B L, Staren J W 2017 IEEE Aerospace Conference Proceedings Big Sky, MT, USA, March 4–11, 2017 pp1–6

    [7]

    Robinson B S, Shih T, Khatri F I, Boroson D M, Hogan M J 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, February 15, 2018 p105240S

    [8]

    Gregory M, Heine F, Kämpfner H, Lange R, Saucke K, Sterr U, Meyer R 2010 Free-Space Laser Communication Technologies XXII, San Francisco, USA, February 26, 2010 75870E

    [9]

    Hauschildt H, le Gallou N, Mezzasoma S, Ludwig Moeller H, Perdigues Armengol J, Witting M, Herrmann J, Carmona C 2018 International Conference on Space Optics, Chania, GREECE, October 09–12, 2018 p111800X

    [10]

    Satoh Y, Miyamoto Y, Takano Y, Yamakawa S, Kohata H 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Okinawa, JAPAN, November 14–16, 2017, p240

    [11]

    Munemasa Y, Kolev D R, Fuse T, Kubo-oka T, Kunimori H, Carrasco-Casado A, Takenaka H, Saito Y, Trinh P V, Suzuki K, Koyama Y, Toyoshima M 2018 Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, USA, January 29–30, 2018 p105240F

    [12]

    任建迎, 孙华燕, 张来线, 张天齐 2019 激光与红外 49 143Google Scholar

    Ren J Y, Sun H Y, Zhang L X, Zhang T Q 2019 Laser Infr. 49 143Google Scholar

    [13]

    崔岳, 唐勇 2020 国际太空 7 38Google Scholar

    Cui Y, Tang Y 2020 Space Int. 7 38Google Scholar

    [14]

    Wan Z S, Shen Y J, Wang Z Y, Shi Z J, Liu Q, Fu X 2022 Light Sci. Appl. 11 144Google Scholar

    [15]

    Wang L Q, Wang J C, Tang X Y, Chen H, Chen X 2022 Opt. Express 30 7854Google Scholar

    [16]

    李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽⋅阿不都克热木, 刘世韦 2022 物理学报 71 140201Google Scholar

    Li Y L, Mei H P, Ren Y C, Zhang J X, Tao Z W, Aizeziguli A, Liu S W 2022 Acta Phys. Sin. 71 140201Google Scholar

    [17]

    Yang Y F, Yan C X, Hu C H, Wu C J 2017 Opt. Express 25 7567Google Scholar

    [18]

    Salem M, Rolland J P 2010 J. Opt. Soc. Am. A 27 1111Google Scholar

    [19]

    Liu Y, Gao M, Zeng X, Liu F, Bi W 2021 Opt. Laser Eng. 146 106694Google Scholar

    [20]

    Geng J N, Feng Z J, Cao C Q, Feng S M, Xu X K, Shang Y J, Wu Z Y, Yan X 2021 Opt. Express 29 39016Google Scholar

    [21]

    Zheng D H, Li Y, Zhou H H, Bian Y M, Yang C, Li W, Qiu J F, Guo H X, Hong X B, Zuo Y, Giles I P, Tong W J, Wu J 2018 Opt. Express 26 28879Google Scholar

    [22]

    Zhang H, Xu L, Guo Y F, Cao J T, Liu W, Yang L Q 2022 Opt. Express 30 7477Google Scholar

    [23]

    孔英秀, 柯熙政, 杨媛 2015 激光与光电子学进展 52 95

    Kong Y X, Ke X Z, Yang Y 2015 Laser Optoelectron Prog. 52 95

    [24]

    Liu C, Chen S Q, Li X Y, Xian H 2014 Opt. Express 22 15554Google Scholar

    [25]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Bellingha: SPIE) pp157–163

    [26]

    艾则孜姑丽⋅阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充 2022 物理学报 71 234201Google Scholar

    Aizeziguli A, Tao Z W, Liu S W, Li Y L, Rao R Z, Ren Y C 2022 Acta Phys. Sin. 71 234201Google Scholar

    [27]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan Z Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [28]

    闫旭, 张文睿, 曹长庆, 冯喆珺 2021 光子学报 50 312

    Yan X, Zhang W R, Cao C Q, Feng Z J 2021 Acta Photonica Sin. 50 312

    [29]

    Wu Z Y, Cao C Q, Feng Z J, Wu X N, Duan C X 2023 Opt. Lett. 48 5257Google Scholar

  • [1] Abdikirim Azizigul, Tao Zhi-Wei, Liu Shi-Wei, Li Yan-Ling, Rao Rui-Zhong, Ren Yi-Chong. Influence of atmospheric turbulence on temporal coherence characteristics of received optical field. Acta Physica Sinica, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [2] He Feng-Tao, Du Ying, Zhang Jian-Lei, Fang Wei, Li Bi-Li, Zhu Yun-Zhou. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence. Acta Physica Sinica, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [3] Zheng Xiao-Tong, Guo Li-Xin, Cheng Ming-Jian1\2, Li Jiang-Ting. Atmospheric channel model of maritime visible light communication based on repeated coding. Acta Physica Sinica, 2018, 67(21): 214206. doi: 10.7498/aps.67.20181112
    [4] Wang Fei, Yu Jia-Yi, Liu Xian-Long, Cai Yang-Jian. Research progress of partially coherent beams propagation in turbulent atmosphere. Acta Physica Sinica, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [6] Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions. Acta Physica Sinica, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [7] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [8] Liu Li-Hui, Lü Wei-Yu, Yang Chao, Mai Can-Ji, Chen De-Peng. Propagation properties of partially coherent Hermite-cosh-Gaussian beams in non-Kolmogorov turbulence. Acta Physica Sinica, 2015, 64(3): 034208. doi: 10.7498/aps.64.034208
    [9] Ke Xi-Zheng, Wang Jiao. Comparison of polarization property of partially coherent beam between propagating along an uplink path and a downlink path in atmospheric turbulence. Acta Physica Sinica, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [10] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] Wang Lü-Qiang, Su Tong, Zhao Bao-Sheng, Sheng Li-Zhi, Liu Yong-An, Liu Duo. Bit error rate analysis of X-ray communication system. Acta Physica Sinica, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [12] Li Xiao-Qing, Ji Xiao-Ling, Zhu Jian-Hua. Higher-order intensity moments of optical beams in atmospheric turbulence. Acta Physica Sinica, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] Li Cheng-Qiang, Zhang He-Yong, Wang Ting-Feng, Liu Li-Sheng, Guo Jin. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence. Acta Physica Sinica, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [14] Liu Yang-Yang, Zhang Wen-Xi. Simulation for Space target interference imaging system distorted by atmospheric turbulence. Acta Physica Sinica, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] Ji Xiao-Ling. Influence of turbulence on the Rayleigh range of partially coherent cosh-Gaussian beams. Acta Physica Sinica, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [16] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] Li Jin-Hong, Lü Bai-Da. Comparative study of partially coherent vortex beam propagations through atmospheric turbulence along a uplink path and a downlink path. Acta Physica Sinica, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [18] Cang Ji, Zhang Yi-Xin. The propagation properties of J0-correlated partially coherent beams in the slant atmosphere. Acta Physica Sinica, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [19] Chen Xiao-Wen, Tang Ming-Yue, Ji Xiao-Ling. The influence of atmospheric turbulence on the spatial correlation property of partially coherent Hermite-Gaussian beams. Acta Physica Sinica, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [20] Ji Xiao-Ling, Xiao Xi, Lü Bai-Da. Effect of atmospheric turbulence on the propagation properties of spatially partially coherent polychromatic light. Acta Physica Sinica, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
Metrics
  • Abstract views:  2554
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2023
  • Accepted Date:  27 March 2024
  • Available Online:  03 April 2024
  • Published Online:  20 May 2024

/

返回文章
返回