搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏振控制的等离激元轨道角动量态的生成与叠加

周浩然 袁伟邺 崔竣硕 张玉芹 宋洪胜

引用本文:
Citation:

偏振控制的等离激元轨道角动量态的生成与叠加

周浩然, 袁伟邺, 崔竣硕, 张玉芹, 宋洪胜

Polarization-controlled Generation and Superposition of Plasmonic Orbital Angular Momentum States

ZHOU Haoran, YUAN Weiye, CUI Junshuo, ZHANG Yuqin, SONG Hongsheng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 近年来,关于表面等离激元轨道角动量(Orbital Angular Momentum,OAM)态的研究主要聚焦于单一OAM态的生成及不同拓扑荷数OAM态的演化。而如何通过微纳结构的精确设计,实现具有特定相位关系的两个OAM态的相干叠加,仍面临诸多挑战。本文提出了一种新型等离激元微纳结构,以矩形缝对为结构单元,按照圆环或分段螺旋线轮廓排列。不仅能够在表面等离激元场中有效产生具有不同拓扑荷的OAM纯态,还可通过调控入射光的偏振态,实现两种OAM态以不同振幅比和相位差的灵活叠加,从而实现OAM叠加态在布洛赫球面上的演化。结合理论分析与数值模拟,本文验证了该结构在圆偏振光照射下可产生不同拓扑荷的OAM纯态;而入射光为线偏振时,则可实现两OAM态等振幅叠加,形成具有结构化分布的OAM叠加态。此外,通过调节线偏振光的偏振角,可有效控制两本征OAM态之间的相位差,从而实现叠加态场分布的规律性旋转。本研究为等离激元OAM态的相干控制提供了新的设计思路,也为多功能光场调控器件的集成设计提供了理论基础和技术路径。
    Recent studies on orbital angular momentum (OAM) states in the surface plasmon polariton (SPP) field have primarily focused on the generation of single OAM modes and the evolution of OAM states with various topological charges. However, achieving coherent superposition of two OAM states with well-defined phase relations through precise nanostructure design remains challenging. In this work, we propose a plasmonic nanostructure consisting of paired rectangular slits arranged along circular or segmented Archimedes spiral. The Archimedean spiral of various radii in azimuthal angle provides a geometry-dependent helical phase; coupled with a rotated nanoslit pair, it introduces a geometric phase of twice the rotated angle. By combining chiral spiral with nanoslit pair units, the design both generates plasmonic OAM eigenstates with arbitrary topological charges and enables their coherent superposition. The amplitudes of the two constituent OAM states are continuously tunable through the degree of polarization of the incident light, and their relative phase difference is controlled by the polarization angle, enabling arbitrary superposition of the plasmonic OAM states with continuously variable amplitude ratios and phase differences. Theoretical analysis and numerical simulations demonstrate that circularly polarized illumination produces distinct OAM pure states, whereas linearly polarized light leads to equal-amplitude superposition states with structured field distributions. Moreover, rotating the polarization angle continuously adjusts the relative phase between the eigenstates and produces a predictable rotation of the resultant interference pattern. These results provide a new approach for coherent control of plasmonic OAM states and offer design guidelines for multifunctional on-chip optical field manipulation devices.
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A. 45 8185

    [2]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics. 3 161

    [3]

    Padgett M, Bowman R 2011 Nat. Photonics. 5 343

    [4]

    Liang Y S, Yao B L, Lei M, Yan S H, Yu X H, Li M M 2016 Acta Opt. Sin. 36 1026003 (in Chinese) [梁言生,姚保利,雷铭,严绍辉,于湘华,李曼曼 2016 光学学报 36 1026003]

    [5]

    Hell S W, Wichmann J 1994 Opt. Lett. 19 780

    [6]

    Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M 2006 Opt. Express 14 3792

    [7]

    Li L, Zhou S Y, Gao C Q, Fu S Y 2025 Acta Phys. Sin. 74 064202 [李浪, 周诗韵, 高春清, 付时尧 2025物理学报 74 064202]

    [8]

    Zhao Y F, Liu J, Li S H, Wang A D, Zhu L, Luo Y, Chen S, Zhou N, Zheng S, Du J, Wang J 2024 AP. Nexus. 3 016004

    [9]

    Li J, Wang G C, Zheng C L, Li J T, Yang Y, Zhang Z, Yang M S, Zhao H L, Li F Y, Tang T T, Wu L, Li J N, Zhang Y T, Zhang Y, Yao J Q 2021 J. Mater. Chem. C. 9 5478

    [10]

    Zang X F, Zhu Y M, Mao C X, Xu W W, Ding H Z, Xie J Y, Cheng Q Q, Chen L, Peng Y, Hu Q, Gu M, Zhuang S L 2019 Adv. Opt. Mater. 7 1801328

    [11]

    Franke-Arnold S, Leach J, Padgett M J, Lembessis V E, Ellinas D, Wright A J, Girkin J M, Öhberg P, Arnold A S 2007 Opt. Express 15 8619

    [12]

    Kapale K T, Dowling J P 2005 Phys. Rev. Lett. 95 173601

    [13]

    Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L, Forbes A 2016 Nat. Photonics. 10 327

    [14]

    Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L, Santamato E 2015 Opt. Lett. 19 4085

    [15]

    Liu H Q, Teng C X, Yang H Y, Deng H C, Xu R H, Deng S J, Chen M, Yuan L B 2018 Opt. Express 26 14792

    [16]

    Zhang K, Yuan Y Y, Zhang D W, Ding X M, Ratni B, Burokur S N, Lu M J, Tang K, Wu Q 2018 Opt. Express 26 1351

    [17]

    Cheng Z K, Luo M C, Sun X Y, Chen M, Zhang Y, Li S Q, Zhu X C 2023 J. Appl. Phys. 133 114502

    [18]

    Zhang N, Xiong B X, Zhang X, Yuan X 2022 Photonics 9 605

    [19]

    Yue F Y, Wen D D, Zhang C M, Gerardot B D, Wang W, Zhang S, Chen X Z 2017 Adv. Mater. 29 1603838

    [20]

    Yang P, Yang R, Li Y C 2021 Opt. Express 29 20229

    [21]

    Zhang S L, Tian X M, Xu J W, Xu Y N, Li L, Liu J L 2025 Acta Phys. Sin. 74 064201 [张胜蓝,田喜敏,许军伟,徐亚宁,李亮,刘杰龙 2025 物理学报 74 064201]

    [22]

    Shitrit N, Nechayev S, Kleiner V, Hasman E 2012 Nano Lett. 12 1620

    [23]

    Liu A P, Xiong X, Ren X F, Cai Y J, Rui G H, Zhan Q W, Guo G C, Guo G P 2013 Sci. Rep. 3 2402

    [24]

    Moon S W, Lee S Y 2020 Plasmonics 15 1781

    [25]

    Kim H, Park J H, Cho S W, Lee S Y, Kang M, Lee B H 2010 Nano Lett. 10 529

    [26]

    Huang F, Jiang X Q, Yuan H M, Yang H N, Li S R, Sun X D 2016 Opt. Lett. 41 1684

    [27]

    Prinz E, Spektor G, Hartelt M, Mahro A K, Aeschlimann M, Orenstein M 2021 Nano Lett. 21 3941

    [28]

    Zhang Y Q, Zeng X Y, Ma L, Zhang R R, Zhan Z J, Chen C, Ren X R, He C W, Liu C X, Cheng C F 2019 Adv. Opt. Mater. 7 1900372

    [29]

    An X Q, Song H S, Zeng X Y, Gu M N, Jiang Z S, He C W, Liu G Y, Cheng C F, Zhang Y Q 2022 Opt. Lett. 47 2032

    [30]

    Dzedolik I V, Pereskokov V 2016 J. Opt. Soc. Am. A 33 1004

    [31]

    Yang S, Chen W, Nelson R L, Zhan Q W 2009 Opt. Lett. 34 3047

    [32]

    Johnson P B, Christy R W. Optical 1972 Phys. Rev. B 6 4370

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, doi: 10.7498/aps.73.20240791
    [2] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, doi: 10.7498/aps.72.20222405
    [3] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, doi: 10.7498/aps.71.20211146
    [4] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器. 物理学报, doi: 10.7498/aps.71.20211909
    [5] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性. 物理学报, doi: 10.7498/aps.70.20211119
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, doi: 10.7498/aps.70.20200975
    [7] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, doi: 10.7498/aps.68.20182036
    [8] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, doi: 10.7498/aps.67.20171899
    [9] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, doi: 10.7498/aps.64.140301
    [10] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, doi: 10.7498/aps.63.150301
    [11] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究. 物理学报, doi: 10.7498/aps.61.124208
    [12] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, doi: 10.7498/aps.61.135202
    [13] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, doi: 10.7498/aps.60.014208
    [14] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, doi: 10.7498/aps.59.8490
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, doi: 10.7498/aps.59.6159
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递. 物理学报, doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究. 物理学报, doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, doi: 10.7498/aps.53.413
计量
  • 文章访问数:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-22

/

返回文章
返回