Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of ground state electronic structures of ionized atoms and rules of their orbital competitions

Jin Rui Gao Xiang Zeng De-Ling Gu Chun Yue Xian-Fang Li Jia-Ming

Citation:

Characteristics of ground state electronic structures of ionized atoms and rules of their orbital competitions

Jin Rui, Gao Xiang, Zeng De-Ling, Gu Chun, Yue Xian-Fang, Li Jia-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ionized atoms widely exist in plasmas, and studies of properties of ionized atoms are the foundations of frontier science researches such as astrophysics and controlled nuclear fusions. For example, the information about the ground configurations of atoms is required for accurately calculating the physical quantities such as energy levels and dynamical processes. The configurations for different ionized atoms can be obtained with the photo-electron energy spectrum experiment, however it is very time-consuming to obtain so many data of all ions. Therefore the more economical theoretical study will be of great importance. As is well known, the configurations of neutral atoms can be determined according to Mendeleev order while those of highly ionized atoms are hydrogen-like due to the strong Coulombic potential of their nuclei. Then with the variations of ionization degree and atomic number along the periodic table, there would appear the interesting competitions between electronic orbitals. Although some theoretical results exist for ions 3 Z 118, 3 Ne 105 (where Z is the atomic number and Ne is the electron number), there are many errors in the results for highly ionized atoms. Therefore, the ground configurations of ionized atoms and their orbital competitions still deserve to be systematically studied. Based on the independent electron approximation, we calculate the energy levels of all possible competition configurations of all the neutral and ionized atoms in the extended periodic tables (2 Z 119) by Dirac-Slater method. Then the ground configurations are determined by calculating the chosen lowest total energy. The advantages of Dirac- Slater method are as follows. 1) It has been shown that the Dirac-Slater calculation is accurate enough for studying the ground properties of atoms, such as the 1st threshold, and that higher accuracy will be obtained for highly ionized atoms, because the electron correlation becomes less important. 2) Furthermore, with Dirac-Slater method we can obtain the localized self-consistent potential, thereby we can study the orbital competition rules for different atoms. Using the three of our designed atomic orbital competition graphs, all of our calculated ground configurations for over 7000 ionized atoms are conveniently expressed. We systematically summarize the rules of orbital competitions for different elements in different periods. We elucidate the mechanism of orbital competition (i.e., orbital collapsing) with the help of self-consistent atomic potential of ionized atoms. Also we compare the orbital competition rules for different periods of transition elements, the rare-earth and transuranium elements with the variation of the self-consistent filed for different periods. On this basis, we summarize the relationship between the orbital competitions and some bulk properties for some elements, such as the superconductivity, the optical properties, the mechanical strength, and the chemistry activities. We find that there exist some abnormal orbital competitions for some lowly ionized and neutral atoms which may lead to the unique bulk properties for the element. With the ground state electronic structures of ionized atoms, we can construct the basis of accurate quasi-complete configuration interaction (CI) calculations, and further accurately calculate the physical quantities like the energy levels, transition rates, collision cross section, etc. Therefore we can meet the requirements of scientific researches such as the analysis of high-power free-electron laser experiments and the accurate measurement of the mass of nuclei.
      Corresponding author: Gao Xiang, xgao@csrc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274035, 11328401) and the National Basic Research Program of China (Grant No. 2011CB921501).
    [1]

    Seaton M J, Opacity Project Team 1995 The Opacity Project (1st Ed.) (Vols. 1 and 2) (Bristol: Institute of Physics Publishing) pp1-592

    [2]

    Dalgarno A 1979 Adv. At. Mol. Opt. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Clark R E H, Reiter D 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions, Springer Series in Chemical Physics (Vol. 78) (Berlin, Heidelberg: Springer) pp135-161

    [7]

    Horton L D 1996 Phys. Scripta T65 175

    [8]

    Qing B, Cheng C, Gao X, Zhang X L, Li J M 2010 Acta Phys. Sin. 59 4547 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 4547]

    [9]

    Zhao Z X, Li L M 1985 Chin. Phys. Lett. 2 449

    [10]

    Dong Q, Li J M 1986 Acta Phys. Sin. 35 1634 (in Chinese) [董骐, 李家明 1986 物理学报 35 1634]

    [11]

    Tong X M, Chu S I 1998 Phys. Rev. A 57 855

    [12]

    Gu C, Jin R, Gao X, Zeng D L, Yue X F, Li J M 2016 Chin. Phys. Lett. 33 043201

    [13]

    Li J M, Zhao Z X 1982 Acta Phys. Sin. 31 97 (in Chinese) [李家明, 赵中新 1982 物理学报 31 97]

    [14]

    Liberman D A, Cromer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

    [15]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer, M A and Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602

    [16]

    Rodrigues G C, Indelicato P, Santos J P, Patte P, Parente F 2004 At. Data Nucl. Data Tables 86 117

    [17]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [18]

    Jonsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [19]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514

    [20]

    Mazurs E G 1974 Graphic Representations of the Periodic System During One Hundred Years (2nd Ed.) (Chicago: University of Alabama Press) pp2-251

    [21]

    Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y, Qiu Y B 2003 High Power Laser and Particle Beams 15 145 (in Chinese) [易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波 2003 强激光与粒子束 15 145]

    [22]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messercshmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J 2010 Nat. Photon. 4 641

    [23]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715

    [24]

    Marrs R E, Elliott S R, Knapp D A 1994 Phys. Rev. Lett. 72 4082

    [25]

    Nakamura N 2013 Plasma Fusion Res. 8 1101152

    [26]

    Epp S W, Lpez-Urrutia C J R, Brenner G, Mckel V, Mkler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001

    [27]

    Epp S W, Lpez-Urrutia C J R, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 194008

    [28]

    Elliott S R 1995 Nucl. Instrm. Meth. B 98 114

    [29]

    Bernitt S, Brown G V, Rudolph J K, Steinbrgge R, Graf A, Leutenegger M, Epp S W, Eberle S, Kubiček K, Mckel V, Simon M C, Trbert E, Magee E W, Beilmann C, Hell N, Schippers S, Mller A, Kahn S M, Surzhykov A, Harman Z, Keitel C H, Clementson J, Porter F S, Schlotter W, Turner J J, Ullrich J, Beiersdorfer P, Lpez-Urrutia J R C 2012 Nature 492 225

    [30]

    Sokel E, Currell F J, Shimizu H, Ohtani S 1999 Phys. Scripta. T80 289

    [31]

    Wu M K, Ashburn J R, Torng C K, Hor P H, Meng R L, Gao L, Huang Z L, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 9

    [32]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412 (in Chinese) [赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈庚华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412]

    [33]

    Geusic J E, Marcos H M, Uitert L G V 1964 Appl. Phys. Lett. 4 10

    [34]

    Glowacki B A, Yan X Y, Fray D, Chen G, Majoros M, Shi Y 2002 Physica C 372 1315

    [35]

    Nassau K, Levinstein H J 1965 Appl. Phys. Lett. 7 69

    [36]

    Barker A S, Verleur J H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286

    [37]

    Sanz O, Gonzalo J, Perea A, Fernndez-Navarro J M, Afonso C N, Lpez J G 2004 Appl. Phys. A 79 1907

    [38]

    Hardy G F, Hulm J K 1953 Phys. Rev. 89 884

    [39]

    Gschneidner K A, Eyring J L 1979 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: North Holland Publ.) pp1-172

    [40]

    Jensen J, Mackintosh A R 1971 Rare Earth Magnetism Structure and Excitations (Oxford: Clarendon Press) pp50-67

    [41]

    Nishiura S, Tanabe S, Fujioka K, Fujimoto Y 2011 Opt. Mater. 33 688

    [42]

    Wang C H, Lin S S 2004 Appl. Catal. A 268 227

    [43]

    Siegrist K, Brown M R, Bellan P M 1989 Rev. Sci. Instrum. 60 5

    [44]

    Patra R, Ghosh S, Sheremet E, Jha E, Rodriguez R D, Lehmann D, Ganguli A K, Gordan O D, Schmidt H, Schulze S, Zahn D R T, Schmidt O G 2014 J. Appl. Phys. 115 094302

    [45]

    Assmus W, Herrman M, Rauchschwalbe U, Riegel S, Lieke W, Spille H, Horn S, Weber G, Steglich F, Cordier G 1984 Phys. Rev. Lett. 52 469

    [46]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schfer H 1979 Phys. Rev. Lett. 43 1892

    [47]

    Finnemore D K, Johnson D L, Ostenson J E, Spedding F H, Beaudry B J 1965 Phys. Rev. 137 A550

    [48]

    Franzke B, Geissel H, Mnzenberg G 2008 Mass Spectrom. Rev. 27 428

    [49]

    Zeng D L, Gao X, Jin R, Li J M 2014 J. Phys.: Conference Series 488 152006

  • [1]

    Seaton M J, Opacity Project Team 1995 The Opacity Project (1st Ed.) (Vols. 1 and 2) (Bristol: Institute of Physics Publishing) pp1-592

    [2]

    Dalgarno A 1979 Adv. At. Mol. Opt. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Clark R E H, Reiter D 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions, Springer Series in Chemical Physics (Vol. 78) (Berlin, Heidelberg: Springer) pp135-161

    [7]

    Horton L D 1996 Phys. Scripta T65 175

    [8]

    Qing B, Cheng C, Gao X, Zhang X L, Li J M 2010 Acta Phys. Sin. 59 4547 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 物理学报 59 4547]

    [9]

    Zhao Z X, Li L M 1985 Chin. Phys. Lett. 2 449

    [10]

    Dong Q, Li J M 1986 Acta Phys. Sin. 35 1634 (in Chinese) [董骐, 李家明 1986 物理学报 35 1634]

    [11]

    Tong X M, Chu S I 1998 Phys. Rev. A 57 855

    [12]

    Gu C, Jin R, Gao X, Zeng D L, Yue X F, Li J M 2016 Chin. Phys. Lett. 33 043201

    [13]

    Li J M, Zhao Z X 1982 Acta Phys. Sin. 31 97 (in Chinese) [李家明, 赵中新 1982 物理学报 31 97]

    [14]

    Liberman D A, Cromer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

    [15]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer, M A and Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602

    [16]

    Rodrigues G C, Indelicato P, Santos J P, Patte P, Parente F 2004 At. Data Nucl. Data Tables 86 117

    [17]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [18]

    Jonsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [19]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514

    [20]

    Mazurs E G 1974 Graphic Representations of the Periodic System During One Hundred Years (2nd Ed.) (Chicago: University of Alabama Press) pp2-251

    [21]

    Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y, Qiu Y B 2003 High Power Laser and Particle Beams 15 145 (in Chinese) [易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波 2003 强激光与粒子束 15 145]

    [22]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messercshmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J 2010 Nat. Photon. 4 641

    [23]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715

    [24]

    Marrs R E, Elliott S R, Knapp D A 1994 Phys. Rev. Lett. 72 4082

    [25]

    Nakamura N 2013 Plasma Fusion Res. 8 1101152

    [26]

    Epp S W, Lpez-Urrutia C J R, Brenner G, Mckel V, Mkler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001

    [27]

    Epp S W, Lpez-Urrutia C J R, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 194008

    [28]

    Elliott S R 1995 Nucl. Instrm. Meth. B 98 114

    [29]

    Bernitt S, Brown G V, Rudolph J K, Steinbrgge R, Graf A, Leutenegger M, Epp S W, Eberle S, Kubiček K, Mckel V, Simon M C, Trbert E, Magee E W, Beilmann C, Hell N, Schippers S, Mller A, Kahn S M, Surzhykov A, Harman Z, Keitel C H, Clementson J, Porter F S, Schlotter W, Turner J J, Ullrich J, Beiersdorfer P, Lpez-Urrutia J R C 2012 Nature 492 225

    [30]

    Sokel E, Currell F J, Shimizu H, Ohtani S 1999 Phys. Scripta. T80 289

    [31]

    Wu M K, Ashburn J R, Torng C K, Hor P H, Meng R L, Gao L, Huang Z L, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 9

    [32]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412 (in Chinese) [赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈庚华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412]

    [33]

    Geusic J E, Marcos H M, Uitert L G V 1964 Appl. Phys. Lett. 4 10

    [34]

    Glowacki B A, Yan X Y, Fray D, Chen G, Majoros M, Shi Y 2002 Physica C 372 1315

    [35]

    Nassau K, Levinstein H J 1965 Appl. Phys. Lett. 7 69

    [36]

    Barker A S, Verleur J H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286

    [37]

    Sanz O, Gonzalo J, Perea A, Fernndez-Navarro J M, Afonso C N, Lpez J G 2004 Appl. Phys. A 79 1907

    [38]

    Hardy G F, Hulm J K 1953 Phys. Rev. 89 884

    [39]

    Gschneidner K A, Eyring J L 1979 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: North Holland Publ.) pp1-172

    [40]

    Jensen J, Mackintosh A R 1971 Rare Earth Magnetism Structure and Excitations (Oxford: Clarendon Press) pp50-67

    [41]

    Nishiura S, Tanabe S, Fujioka K, Fujimoto Y 2011 Opt. Mater. 33 688

    [42]

    Wang C H, Lin S S 2004 Appl. Catal. A 268 227

    [43]

    Siegrist K, Brown M R, Bellan P M 1989 Rev. Sci. Instrum. 60 5

    [44]

    Patra R, Ghosh S, Sheremet E, Jha E, Rodriguez R D, Lehmann D, Ganguli A K, Gordan O D, Schmidt H, Schulze S, Zahn D R T, Schmidt O G 2014 J. Appl. Phys. 115 094302

    [45]

    Assmus W, Herrman M, Rauchschwalbe U, Riegel S, Lieke W, Spille H, Horn S, Weber G, Steglich F, Cordier G 1984 Phys. Rev. Lett. 52 469

    [46]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schfer H 1979 Phys. Rev. Lett. 43 1892

    [47]

    Finnemore D K, Johnson D L, Ostenson J E, Spedding F H, Beaudry B J 1965 Phys. Rev. 137 A550

    [48]

    Franzke B, Geissel H, Mnzenberg G 2008 Mass Spectrom. Rev. 27 428

    [49]

    Zeng D L, Gao X, Jin R, Li J M 2014 J. Phys.: Conference Series 488 152006

  • [1] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] Cheng Chao, Wang Xun, Sun Jia-Xing, Cao Chao-Ming, Ma Yun-Li, Liu Yan-Xia. Electronic structure calculation of Cr content effect on corrosion resistance of Ti-Nb-Cr alloy. Acta Physica Sinica, 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [3] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [4] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [5] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [6] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [7] Li Shu-Li, Zhang Jian-Min. Energies, electronic structures and magnetic properties of Ni atomic chain encapsulated in carbon nanotubes: a first-principles calculation. Acta Physica Sinica, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [8] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [9] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [10] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [11] Ji Zheng-Hua, Zeng Xiang-Hua, Cen Jie-Ping, Tan Ming-Qiu. Electronic structure and phase transformation in ZnSe: An ab initio study. Acta Physica Sinica, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [12] Liu Qiang, Cheng Xin-Lu, Fan Yong-Heng, Yang Xiang-Dong. First-principles calculation of p-Zn1-xMgxO electronic structure by doping with Al and N. Acta Physica Sinica, 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [13] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [14] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [15] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [17] Simulative calculation of electronic structure of F-doped SnO2. Acta Physica Sinica, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [18] Tang Chun-Mei, Yuan Yong-Bo, Deng Kai-Ming, Yang Jin-Long. Structural and electronic properties of C72 and La2@C72. Acta Physica Sinica, 2006, 55(7): 3601-3605. doi: 10.7498/aps.55.3601
    [19] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [20] Tao Xiang-Ming, Xu Xian-Jun, Tan Ming-Qiu. . Acta Physica Sinica, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
Metrics
  • Abstract views:  6074
  • PDF Downloads:  609
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2015
  • Accepted Date:  29 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回