Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress

Wang Hong-Ming Zhu Yi Li Gui-Rong Zheng Rui

Citation:

Plasticity and microstructure of AZ31 magnesium alloy under coupling action of high pulsed magnetic field and external stress

Wang Hong-Ming, Zhu Yi, Li Gui-Rong, Zheng Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As an h.c.p crystal structure with only a few limited slipping planes, the AZ31 magnesium alloy exhibits a bad plasticity in the presence of external stress. Due to its low density, advanced damping capacity and high ratio strength and rigidity, the magnesium alloy has gradually become the focused and potential structural and functional metallic material in the diverse fields of aerospace, aviation and vehicle transportation, electronic products, etc. Therefore, it is of great importance to improve the process ability of conventional magnetism alloy as AZ31. In the past decades many approaches have been proposed in order to improve the plastic deformation capability. Among these, the diverse physical fields are regarded as the effective methods to improve the comprehensive mechanical properties of metallic materials due to their peculiar heat, force and quantum effects together with the advantageous characteristics of low pollution and high efficiency. In the paper, on the basis of previous researches, a high pulsed magnetic field is introduced into the tensile test to study the influences of magnetic field on the plasticity and microstructure of AZ31 magnesium alloy in order to explore a novel way to enhance the plastic deformation capability of alloy. As for the current experiment, the tensile test of AZ31 magnesium alloy is carried out under the coupling action of high pulsed magnetic field and external stress. The test results are compared with those processed without magnetic field. Several advanced detection methods are utilized to investigate the microstructure including the electron back scattered diffraction, X-ray diffraction and transmission electron microscopy, etc. Besides, the first principle is utilized to calculate the magnetic properties of main precipitates (Mg17Al12).The experimental results show that the tensile strength and elongation of the 3 T sample are increased by 2.2% and 28.7% in comparison to those of the 0 T sample. It highlights that when the high pulsed magnetic field is introduced into the plastic deformation process, the plasticity of the magnesium alloy can be improved without reducing the tensile strength of the material. The action mechanism of magnetic field is analyzed in detail and attributed to the magnetoplasticity effect. The calculation results on the basis of first principle show that the (Mg17Al12) phase is paramagnetic, which is helpful for performing the effect of magnetic field. The magnetic field enhances the flexibility of the dislocation movement and facilitates the proliferation of the dislocation. The dislocation and stress concentrating at the grain boundaries accelerate the formation of recrystallization, which is of great importance to the sub-grain generation and grain refinement that is beneficial to exhibiting the fine grain strengthening and enhancing the strength and toughness of alloy. Meanwhile, during the peculiar tensile process, the magnetic field induces the grain rotation. The newborn fine grains along the non-basal face weaken the (0001) basal texture of magnesium alloy. The characteristic of the texture structure is helpful for improving the plastic deformation capacity of AZ31 alloy. The plastic deformation under high magnetic field is regarded as an advanced way to improve the plasticities of similar nonmagnetic metallic materials such as aluminum, titanium and copper alloys and their composites.
      Corresponding author: Li Gui-Rong, liguirong@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51001054, 51174099) and the Postgraduate Research and Innovation Project of Jiangsu Province, China (Grant No. SJLX15_0490).
    [1]

    Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]

    [2]

    Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170

    [3]

    Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661

    [4]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [5]

    Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]

    [6]

    Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]

    [7]

    Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]

    [8]

    Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]

    [9]

    Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 物理学报 64 087104]

    [10]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [11]

    Golovin Y 2004 Phys. Solid State 46 789

    [12]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [13]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [14]

    Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]

    [15]

    Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]

    [16]

    Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 物理学报 57 5491]

    [17]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [18]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [19]

    Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]

    [20]

    Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181

    [21]

    Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344

    [22]

    Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]

    [23]

    Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]

    [24]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [25]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]

    [26]

    Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]

    [27]

    Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]

    [28]

    Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]

    [29]

    Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89

    [30]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

  • [1]

    Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]

    [2]

    Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170

    [3]

    Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661

    [4]

    Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881

    [5]

    Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]

    [6]

    Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]

    [7]

    Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]

    [8]

    Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]

    [9]

    Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 物理学报 64 087104]

    [10]

    Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812

    [11]

    Golovin Y 2004 Phys. Solid State 46 789

    [12]

    Molotskii M I 2000 Mat. Sci. Eng. A 287 248

    [13]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [14]

    Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]

    [15]

    Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]

    [16]

    Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 物理学报 57 5491]

    [17]

    Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]

    [18]

    Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16

    [19]

    Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]

    [20]

    Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181

    [21]

    Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344

    [22]

    Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]

    [23]

    Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]

    [24]

    Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]

    [25]

    Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]

    [26]

    Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]

    [27]

    Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]

    [28]

    Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]

    [29]

    Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89

    [30]

    Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]

  • [1] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] Li Guo-Jian, Chang Ling, Liu Shi-Ying, Li Meng-Meng, Cui Wei-Bin, Wang Qiang. Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties. Acta Physica Sinica, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang. Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle. Acta Physica Sinica, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [4] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] Cao Yong-Ze, Wang Qiang, Li Guo-Jian, Ma Yong-Hui, Sui Xu-Dong, He Ji-Cheng. Effects of high magnetic field on the growth and magnetic properties of Fe-Ni nano-polycrystalline thin films with different thickness values. Acta Physica Sinica, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [6] Li Qiang, Yang He, Xue Xiang-Xin, Li Qing-Wei. Effects of high magnetic field on structure and optical properties of metal ions doped modified CaTiO3. Acta Physica Sinica, 2014, 63(22): 227803. doi: 10.7498/aps.63.227803
    [7] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [8] Cao Yong-Ze, Li Guo-Jian, Wang Qiang, Ma Yong-Hui, Wang Hui-Min, He Ji-Cheng. Effects of high magnetic field on the microstructure and magnetic properties of Fe80Ni20 thin films with different thickness values. Acta Physica Sinica, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [9] Yuan Yi, Li Ying-Long, Wang Qiang, Liu Tie, Gao Peng-Fei, He Ji-Cheng. Influence of high magnetic fields on phase transition and solidification microstructure in Mn-Sb peritectic alloy. Acta Physica Sinica, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [10] Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi. Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy. Acta Physica Sinica, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [11] Men Fu-Dian, Wang Bing-Fu, He Xiao-Gang, Wei Qun-Mei. Thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [12] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [13] Liu Tao, Guo Zhao-Hui, Li Xiu-Mei, Li Wei. Effect of microstructure on the magnetic properties of Pt-Co permanent magnetic alloy. Acta Physica Sinica, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [14] Wang Jiang, Zhong Yun-Bo, Ren Wei-Li, Lei Zuo-Sheng, Ren Zhong-Ming, Xu Kuang-Di. Effect of high static magnetic field and AC current on solidification of Zn-30wt%Bi monotectic alloy. Acta Physica Sinica, 2009, 58(2): 893-900. doi: 10.7498/aps.58.893
    [15] Zhang Fei-Peng, Lu Qing-Mei, Zhang Jiu-Xing, Zhang Xin. Texture and electrical transport properties of Ba and Ag double substituted BaxAgyCa3-x-yCo4O9 oxide. Acta Physica Sinica, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [16] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] Pang Xue-Jun, Wang Qiang, Wang Chun-Jiang, Wang Ya-Qin, Li Ya-Bin, He Ji-Cheng. Effects of high magnetic fields on the distribution of solute elements in Al-alloys. Acta Physica Sinica, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [18] Wang Chun-Jiang, Wang Qiang, Wang Ya-Qin, Huang Jian, He Ji-Cheng. Effects of high magnetic fields on the distribution of Si in solidified structures of Al-Si alloy. Acta Physica Sinica, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [19] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
Metrics
  • Abstract views:  6147
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2016
  • Accepted Date:  05 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回