Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Band gaps of the phononic piezoelectric smart materials with LCR shunting circuits

Tang Yi-Fan Lin Shu-Yu

Citation:

Band gaps of the phononic piezoelectric smart materials with LCR shunting circuits

Tang Yi-Fan, Lin Shu-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Environmental forces can produce undesired vibrations in mechanical structures that can limit the precision of mechanical equipment and cause mechanical failure. Piezoelectric-shunt damping is an attractive technique for controlling the vibrating structures, which is reliable, economical and light-weight. Phononic crystal is an internal component whose elastic constant, density and sound velocity change periodically. When the elastic wave passes through a phononic crystal, special dispersion curve is formed due to the interaction of periodic arrangement materials. In order to study the electromagnetic oscillation band gap of the piezoelectric phononic crystal with LCR shunt network at torsional and flexural vibration, we propose a new phononic piezoelectric beam, which is composed of aluminum and epoxy resin. When the piezoelectric patch is strained, the electrical energy is dissipated as current flows through an external LCR shunting circuit. By combining the piezoelectric effect with the mechanical vibration of the smart material, the equivalent additional stress of piezoelectric patches is deduced. Moreover, coupling the energy band theory of phononic crystal with the effect of electromagnetic oscillation, we calculate the band gap characteristics of torsional and flexural vibration of intelligent material. Using the transfer matrix method and Bloch theorem for periodic boundary conditions, the band gap of the phononic beam can be calculated. With the increase of resistance, the amplitude attenuation of the band gap decreases. However, it can expand the frequency range. The inherent frequency of the electromagnetic oscillation is 1/[2π√L(C + CP)]. The sum of capacitance and inherent capacitance is the total capacitance of the shunting circuit. Therefore, the frequency of the electromagnetic oscillation decreases with the increases of the capacitance and inductance. The amplitude attenuation of the band gap increases with the increase of the inductance and decreases greatly with the rise of the capacitance. Three main differences between the LCR shunt networks and traditional circuits are found. First, the band gaps of the phononic piezoelectric smart material are composed of Bragg band gaps and local resonant band gaps. The former one is due to the mismatch between aluminum and epoxy resin, which makes the elastic waves have no corresponding vibration modes at certain frequencies. The latter one is from the effect of electromagnetic oscillation in LCR shunt networks, which consume the energy by resistor. Second, by tuning the resistance, capacitance and inductance, we can change the singularity position and stress magnitude of equivalent additional force curve. The amplitude attenuations of locally resonant band gaps and electromechanical coupling coefficient will be changed. Third, both locations and widths of the band gaps can be tuned by simply varying the value of negative capacitance of the shunting networks without needing to modify the configuration of the structure. Therefore, it provides a new idea for controlling the vibration and reducing the noise of the phononic piezoelectric smart material.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374200, 11474192).
    [1]

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]

    [2]

    Wang G, Chen S B, Wen J H 2011 Smart Mater. Struct. 20 015026

    [3]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [4]

    Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017

    [5]

    Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929

    [6]

    Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730

    [7]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203

    [8]

    Park J S, Lim S C, Choi S B, Kim J H, Park Y P 2004 J. Sound Vib. 269 1111

    [9]

    Degraeve S, Granger C, Dubus B, Vasseur J O, Pham T M, Hladky-Hennion A C 2014 J. Appl. Phys. 115 194508

    [10]

    Wang Y Z, Li F M, Huang W H, Wang Y S 2008 J. Mech. Phys. Solids 56 1578

    [11]

    Joo Hwan Oh, I I Kyu Lee, Pyung Sik Ma, Yoon Young Kim 2011 Appl. Phys. Lett. 99 083505

    [12]

    Chen S B, Wen J H, Yu D L, Wang G, Wen X S 2011 Chin. Phys. B 20 014301

    [13]

    Li J Q, Li F M, Wang Y S, Kishimoto K 2008 Acta Mech. Solida. Sin. 21 507

    [14]

    Forward R L 1979 Appl. Opt. 18 690

    [15]

    Yang L F, Wang Y F, Zhou Y 2012 Acta Phys. Sin. 61 107702 (in Chinese) [杨立峰, 王亚非, 周鹰 2012 物理学报 61 107702]

    [16]

    Tang J, Wang K W 1999 J. Vib. Acoust. 121 379

    [17]

    Tang J, Wang K W 2003 J. Vib. Acoust. 125 95

    [18]

    Airoldi L, Ruzzene M 2011 J. Intel. Mat. Syst. Struct. 22 1567

    [19]

    Yu D L, Liu Y Z, Wang G, Wen J H, Qiu J 2006 Journal of Vibration and Shock 25 104 (in Chinese) [郁殿龙,刘耀宗,王刚,温激鸿,邱静 2006 振动与冲击 25 104]

    [20]

    Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 0387 ( in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 0387]

    [21]

    Chen S B, Wen J H, Wang G, Yu D L, Wen X S 2012 J. Intel. Mat. Syst. Struct. 23 1613

  • [1]

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]

    [2]

    Wang G, Chen S B, Wen J H 2011 Smart Mater. Struct. 20 015026

    [3]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [4]

    Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017

    [5]

    Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929

    [6]

    Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730

    [7]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203

    [8]

    Park J S, Lim S C, Choi S B, Kim J H, Park Y P 2004 J. Sound Vib. 269 1111

    [9]

    Degraeve S, Granger C, Dubus B, Vasseur J O, Pham T M, Hladky-Hennion A C 2014 J. Appl. Phys. 115 194508

    [10]

    Wang Y Z, Li F M, Huang W H, Wang Y S 2008 J. Mech. Phys. Solids 56 1578

    [11]

    Joo Hwan Oh, I I Kyu Lee, Pyung Sik Ma, Yoon Young Kim 2011 Appl. Phys. Lett. 99 083505

    [12]

    Chen S B, Wen J H, Yu D L, Wang G, Wen X S 2011 Chin. Phys. B 20 014301

    [13]

    Li J Q, Li F M, Wang Y S, Kishimoto K 2008 Acta Mech. Solida. Sin. 21 507

    [14]

    Forward R L 1979 Appl. Opt. 18 690

    [15]

    Yang L F, Wang Y F, Zhou Y 2012 Acta Phys. Sin. 61 107702 (in Chinese) [杨立峰, 王亚非, 周鹰 2012 物理学报 61 107702]

    [16]

    Tang J, Wang K W 1999 J. Vib. Acoust. 121 379

    [17]

    Tang J, Wang K W 2003 J. Vib. Acoust. 125 95

    [18]

    Airoldi L, Ruzzene M 2011 J. Intel. Mat. Syst. Struct. 22 1567

    [19]

    Yu D L, Liu Y Z, Wang G, Wen J H, Qiu J 2006 Journal of Vibration and Shock 25 104 (in Chinese) [郁殿龙,刘耀宗,王刚,温激鸿,邱静 2006 振动与冲击 25 104]

    [20]

    Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 0387 ( in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 0387]

    [21]

    Chen S B, Wen J H, Wang G, Yu D L, Wen X S 2012 J. Intel. Mat. Syst. Struct. 23 1613

  • [1] Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal. Acta Physica Sinica, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [2] Tan Zi-Hao, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Liu Zi-Jiang. Numerical simulation study on band gap characteristics of surface phononic crystal with spherical composite column. Acta Physica Sinica, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] Hu Bing, Yu Dian-long, Liu Jiang-wei, Zhu Fu-lei, Zhang Zhen-fang. Shock vibration characteristics of fluid-structure interaction phononic crystal pipeline. Acta Physica Sinica, 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [4] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [5] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [6] Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [7] Gao Han-Feng, Zhang Xin, Wu Fu-Gen, Yao Yuan-Wei. Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals. Acta Physica Sinica, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [8] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [9] Chen A-Li, Liang Tong-Li, Wang Yue-Sheng. Study on band gap properties of two-dimensional 8-fold quasi-periodic phononic crystals. Acta Physica Sinica, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [10] Zhang Si-Wen, Wu Jiu-Hui. Low-frequency band gaps in phononic crystals with composite locally resonant structures. Acta Physica Sinica, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [11] Zheng Shu-Wen, Fan Guang-Han, Li Shu-Ti, Zhang Tao, Su Chen. Energy band properties and phase stability of Be1-xMgxO alloy. Acta Physica Sinica, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [12] Zheng Shu-Wen, Fan Guang-Han, He Miao, Yao Guang-Rui, Chen Jun, He Long-Fei. Study on the electronic structures and energy band properties of Cd-doped wurtzite BeO. Acta Physica Sinica, 2012, 61(17): 177102. doi: 10.7498/aps.61.177102
    [13] Zheng Shu-Wen, Fan Guang-Han, Zhang Yong, He Miao, Li Shu-Ti, Zhang Tao. Study on the lattice constants and energy band properties of Be and Ca doped wurtzite ZnO. Acta Physica Sinica, 2012, 61(22): 227101. doi: 10.7498/aps.61.227101
    [14] Yang Li-Feng, Wang Ya-Fei, Zhou Ying. The transmission properties in one-dimensional piezoelectric Fibonacci-class quasi-periodical phononic crystals. Acta Physica Sinica, 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [15] Gao Guo-Qin, Ma Shou-Lin, Jin Feng, Kim Tong-Beum, Lu Tian-Jian. Acoustic band gaps in finite-sized two-dimensional solid/fluid phononic crystals. Acta Physica Sinica, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [16] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [17] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [18] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [20] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
Metrics
  • Abstract views:  7129
  • PDF Downloads:  379
  • Cited By: 0
Publishing process
  • Received Date:  29 February 2016
  • Accepted Date:  02 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回