Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theory and calculations of colloidal depletion interaction

Ma Hong-Ru

Citation:

Theory and calculations of colloidal depletion interaction

Ma Hong-Ru
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Colloidal suspension is composed of particles with sizes between 1 nm and 1 m, suspended in liquid phase. The interaction between the particles consists of a hard core repulsive interaction and other kinds of repulsive and attractive interacions. Hard interaction forbids the particles from occupying the same places, resulting in a depletion effect. When big colloid particles are immersed in a colloid of small particles, each big particle has a depletion layer where the small particles cannot enter due to the hard interaction. The depletion layers of two big particles overlap when they are close enough so that extra free volume of the small particles increases and therefore the entropy of the small particles increase, thus an effective interaction between big particles is induced. This effective interaction is the so-called depletion interaction. In this review the concepts and an intuitive explanation of depletion interaction of colloidal suspensions are presented. The numerical calculation methods, including the acceptance ratio method, Wang-Landau-type method, and density functional theory method, are briefly reviewed. Several useful analytic approximations are presented. Stating from the depletion interaction between two flat plates, the Derjaguin approximation is introduced through the Asakura- Oosawa model. With this approximation, the approximate formulas of depletion interaction between two hard spheres, between a hard sphere and a hard wall, and between a hard sphere and curved hard walls in a small hard sphere colloid are derived. The depletion interaction between two hard spheres in a thin rod colloid and a thin disk colloid are also derived in the Derjaguin approximation.
      Corresponding author: Ma Hong-Ru, hrma@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304169).
    [1]

    Graham T 1861 Philosophical Transactions of the Royal Society of London 151 183

    [2]

    Brown R 1828 Philosophical Magazine Series 2 4 161

    [3]

    Einstein A 1905 Annalen der Physik 17 549

    [4]

    Matijevic E 1986 Langmuir 2 12

    [5]

    Matijevic E 1994 Langmuir 10 8

    [6]

    Snoeks E, van Blaaderen A, van Dillen T, van Kats C M, Brongersma M L, Polman A 2000 Adv. Mater. 12 1511

    [7]

    Hong L, Jiang S, Granick S 2006 Langmuir 22 9495

    [8]

    Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S 2010 Adv. Mater. 22 1060

    [9]

    Pusey P N (In Hansen J P, Levesque D, Zinn-Justin J editors) 1991 Liquids, Freezing and Glass Transition. II, chapter 10 (Amsterdam: North-Holland) p763

    [10]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids. Studies in Interface Science (Amsterdam: Elsevier Science)

    [11]

    Nägele G 1996 Phys. Reports 272 215

    [12]

    Klein R 1997 The Physics of Complex Systems (In Mallamace F, Stanley H E, Ed.) (Amsterdam: IOS Press) pp301-345

    [13]

    Likos C N 2001 Phys. Reports 348 267

    [14]

    Hansen J, McDonald I R 2013 Theory of Simple Liquids: With Applications to Soft Matter (New York: Academic Press)

    [15]

    Lekkerkerker H N W, Tuinier R 2011 Colloids and the Depletion Interaction (Heidelberg: Springer)

    [16]

    Derjaguin B V, Landau L 1941 Acta Physicochim. URSS 14 633

    [17]

    Verwey E F, Overbeek J T G 1948 Theory of the Stability of Lyophobic Colloids (Amsterdam: Elsevier)

    [18]

    London F 1930 Z. Phys. Chem. 11 222

    [19]

    Eisenschitz R, London F 1930 Zeitschrift fr Physik 60 491

    [20]

    Israelachvili J N 2011 Intermolecular and Surface Forces (3rd Ed.) (New York: Academic Press)

    [21]

    Asakura S, Oosawa F 1954 J. Chem. Phys. 22 1255

    [22]

    Vrij A 1976 Pure Appl. Chem. 48 471

    [23]

    Dinsmore A D, Warren P B, Poon W C K, Yodh A G 1997 EPL 40 337

    [24]

    Bartlett P, Ottewill R H, Pusey P N 1992 Phys. Rev. Lett. 68 3801

    [25]

    Eldridge M D, Madden P A, Frenkel D 1993 Molec. Phys. 79 105

    [26]

    Dinsmore A D, Yodh A G, Pine D J 1996 Nature 383 239

    [27]

    Onsager L 1933 Chem. Rev. 13 73

    [28]

    Onsager L 1949 Ann. NY Acad. Sci. 51 627

    [29]

    Attard P 1989 J. Chem. Phys. 91 3083

    [30]

    Götzelmann B, Evans R, Dietrich S 1998 Phys. Rev. E 57 6785

    [31]

    Bennett C H 1976 J. Comp. Phys. 22 245

    [32]

    Allen M P, Tildesley D J 1994 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [33]

    Li W H, Xue S, Ma H R 2001 J. Shanghai Jiao Tong Univ. E-6 126

    [34]

    Li W H, Ma H R 2002 Phys. Rev. E 66 061407

    [35]

    Li W H, Ma H R 2003 Eur. Phys. J. E 12 321

    [36]

    Li W H, Ma H R 2003 J. Chem. Phys. 119 585

    [37]

    Li W H, Yang T, Ma H R 2008 J. Chem. Phys. 128 044910

    [38]

    Wang F G, Landau D P 2001 Phys. Rev. Lett. 86 2050

    [39]

    Wang F G, Landau D P 2001 Phys. Rev. E 64 056101

    [40]

    Miao H, Li Y, Ma H R 2014 J. Chem. Phys. 140 154904

    [41]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [42]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [43]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [44]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [45]

    Tarazona P 2000 Phys. Rev. Lett. 84 694

    [46]

    Derjaguin B 1934 Kolloid-Zeitschrift 69 155

    [47]

    Glandt E D 1980 J. Colloid Interf. Sci. 77 512

    [48]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Physica A 222 10

    [49]

    Walz J Y, Sharma A 1994 J. Colloid Interf. Sci. 168 485

    [50]

    Biben T, Bladon P, Frenkel D 1996 J. Phys. Condensed Mat. 8 10799

    [51]

    Fisher I Z 1964 Statistical Theory of Liquids (Chicago: The University of Chicago Press)

    [52]

    Henderson J R 1986 Molec. Phys. 59 89

    [53]

    Holyst R 1989 Molec. Phys. 68 391

    [54]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [55]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Phys. Rev. Lett. 75 4548

    [56]

    Mao Y, Cates M E, Lekkerkerker H N W 1997 J. Chem. Phys. 106 3721

    [57]

    Mao Y, Bladon P, Lekkerkerker H N W, Cates M E 1997 Molec. Phys. 92 151

    [58]

    Piech M, Walz J Y 2000 J. Colloid Interf. Sci. 232 86

    [59]

    Oversteegen S M, Lekkerkerker H N W 2004 Physica A 341 23

    [60]

    Henderson J R 2002 Physica A 313 321

  • [1]

    Graham T 1861 Philosophical Transactions of the Royal Society of London 151 183

    [2]

    Brown R 1828 Philosophical Magazine Series 2 4 161

    [3]

    Einstein A 1905 Annalen der Physik 17 549

    [4]

    Matijevic E 1986 Langmuir 2 12

    [5]

    Matijevic E 1994 Langmuir 10 8

    [6]

    Snoeks E, van Blaaderen A, van Dillen T, van Kats C M, Brongersma M L, Polman A 2000 Adv. Mater. 12 1511

    [7]

    Hong L, Jiang S, Granick S 2006 Langmuir 22 9495

    [8]

    Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S 2010 Adv. Mater. 22 1060

    [9]

    Pusey P N (In Hansen J P, Levesque D, Zinn-Justin J editors) 1991 Liquids, Freezing and Glass Transition. II, chapter 10 (Amsterdam: North-Holland) p763

    [10]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids. Studies in Interface Science (Amsterdam: Elsevier Science)

    [11]

    Nägele G 1996 Phys. Reports 272 215

    [12]

    Klein R 1997 The Physics of Complex Systems (In Mallamace F, Stanley H E, Ed.) (Amsterdam: IOS Press) pp301-345

    [13]

    Likos C N 2001 Phys. Reports 348 267

    [14]

    Hansen J, McDonald I R 2013 Theory of Simple Liquids: With Applications to Soft Matter (New York: Academic Press)

    [15]

    Lekkerkerker H N W, Tuinier R 2011 Colloids and the Depletion Interaction (Heidelberg: Springer)

    [16]

    Derjaguin B V, Landau L 1941 Acta Physicochim. URSS 14 633

    [17]

    Verwey E F, Overbeek J T G 1948 Theory of the Stability of Lyophobic Colloids (Amsterdam: Elsevier)

    [18]

    London F 1930 Z. Phys. Chem. 11 222

    [19]

    Eisenschitz R, London F 1930 Zeitschrift fr Physik 60 491

    [20]

    Israelachvili J N 2011 Intermolecular and Surface Forces (3rd Ed.) (New York: Academic Press)

    [21]

    Asakura S, Oosawa F 1954 J. Chem. Phys. 22 1255

    [22]

    Vrij A 1976 Pure Appl. Chem. 48 471

    [23]

    Dinsmore A D, Warren P B, Poon W C K, Yodh A G 1997 EPL 40 337

    [24]

    Bartlett P, Ottewill R H, Pusey P N 1992 Phys. Rev. Lett. 68 3801

    [25]

    Eldridge M D, Madden P A, Frenkel D 1993 Molec. Phys. 79 105

    [26]

    Dinsmore A D, Yodh A G, Pine D J 1996 Nature 383 239

    [27]

    Onsager L 1933 Chem. Rev. 13 73

    [28]

    Onsager L 1949 Ann. NY Acad. Sci. 51 627

    [29]

    Attard P 1989 J. Chem. Phys. 91 3083

    [30]

    Götzelmann B, Evans R, Dietrich S 1998 Phys. Rev. E 57 6785

    [31]

    Bennett C H 1976 J. Comp. Phys. 22 245

    [32]

    Allen M P, Tildesley D J 1994 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [33]

    Li W H, Xue S, Ma H R 2001 J. Shanghai Jiao Tong Univ. E-6 126

    [34]

    Li W H, Ma H R 2002 Phys. Rev. E 66 061407

    [35]

    Li W H, Ma H R 2003 Eur. Phys. J. E 12 321

    [36]

    Li W H, Ma H R 2003 J. Chem. Phys. 119 585

    [37]

    Li W H, Yang T, Ma H R 2008 J. Chem. Phys. 128 044910

    [38]

    Wang F G, Landau D P 2001 Phys. Rev. Lett. 86 2050

    [39]

    Wang F G, Landau D P 2001 Phys. Rev. E 64 056101

    [40]

    Miao H, Li Y, Ma H R 2014 J. Chem. Phys. 140 154904

    [41]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [42]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [43]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [44]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [45]

    Tarazona P 2000 Phys. Rev. Lett. 84 694

    [46]

    Derjaguin B 1934 Kolloid-Zeitschrift 69 155

    [47]

    Glandt E D 1980 J. Colloid Interf. Sci. 77 512

    [48]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Physica A 222 10

    [49]

    Walz J Y, Sharma A 1994 J. Colloid Interf. Sci. 168 485

    [50]

    Biben T, Bladon P, Frenkel D 1996 J. Phys. Condensed Mat. 8 10799

    [51]

    Fisher I Z 1964 Statistical Theory of Liquids (Chicago: The University of Chicago Press)

    [52]

    Henderson J R 1986 Molec. Phys. 59 89

    [53]

    Holyst R 1989 Molec. Phys. 68 391

    [54]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [55]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Phys. Rev. Lett. 75 4548

    [56]

    Mao Y, Cates M E, Lekkerkerker H N W 1997 J. Chem. Phys. 106 3721

    [57]

    Mao Y, Bladon P, Lekkerkerker H N W, Cates M E 1997 Molec. Phys. 92 151

    [58]

    Piech M, Walz J Y 2000 J. Colloid Interf. Sci. 232 86

    [59]

    Oversteegen S M, Lekkerkerker H N W 2004 Physica A 341 23

    [60]

    Henderson J R 2002 Physica A 313 321

  • [1] Liang Jian, Wang Hua-Guang, Zhang Ze-Xin. Experimental study of confined diffusion of rough and smooth ellipsoidal colloids. Acta Physica Sinica, 2024, 73(14): 148202. doi: 10.7498/aps.73.20240559
    [2] Duan Hao-Yang, Yang Ke-Xin, Cao Yi-Gang. Friction characteristics of colloidal particle systems with repulsive interactions of different force ranges. Acta Physica Sinica, 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [3] Liu Xin-Zhuo, Wang Hua-Guang. Experimental study of diffusion behaviors of an ellipsoidal colloid in spherical colloid systems. Acta Physica Sinica, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [4] Bei Bang-Kun, Wang Hua-Guang, Zhang Ze-Xin. Two-dimensional crystallization in finite-sized colloidal systems. Acta Physica Sinica, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [5] Chen Ke. Applications of colloids in glass researches. Acta Physica Sinica, 2017, 66(17): 178201. doi: 10.7498/aps.66.178201
    [6] Wang Li-Lin, Wang Zhi-Jun, Lin Xin, Wang Jin-Cheng, Huang Wei-Dong. Effect of cooling rate on crystallization process of thermo-sensitive poly-N-isopropylacrylamide colloid. Acta Physica Sinica, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [7] Zhang Tian-Hui, Cao Jing-Sheng, Liang Ying, Liu Xiang-Yang. Colloids in the study of fundamental physics. Acta Physica Sinica, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [8] Wu Sai, Li Wei-Bin, Shi Feng, Jiang Shi-Chun, Lan Ding, Wang Yu-Ren. Observation of colloidal particle deposition during the confined droplet evaporation process. Acta Physica Sinica, 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [9] Niu Yu-Quan, Zheng Bin, Cui Chun-Hong, Wei Wei, Zhang Cai-Xia, Meng Qing-Tian. The adhesion of two cylindrical colloids to a tubular membrane. Acta Physica Sinica, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [10] Li Xiao-Long, Lu Ying, Zhai Yong-Liang, Wu Lan-Sheng, Sun Wei, Hu Shu-Xin. Isotropic compression of colloidal crystal in electric field between plate electrode. Acta Physica Sinica, 2013, 62(17): 176105. doi: 10.7498/aps.62.176105
    [11] Chen Gen-Yu, Wu Han-Hua, Li Yue, Chang Hong, Tang Yuan-Guang. Effect of electrical parameters on characteristics of microarc oxidation coatings of commercially pure titanium in colloid. Acta Physica Sinica, 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [12] Huang Li-Xin, Gao Hai-Xia, Xiao Chang-Ming. Coupling effects of depletion interactions in colloidal system. Acta Physica Sinica, 2009, 58(8): 5864-5870. doi: 10.7498/aps.58.5864
    [13] Zhan Xiao-Yuan, Zhang Yue, Qi Jun-Jie, Gu You-Song, Zheng Xiao-Lan. The magnetic interactions in FePt nanocomposite film. Acta Physica Sinica, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [14] Li Chun-Shu, Xiao Chang-Ming. Depletion interactions in charged colloidal system. Acta Physica Sinica, 2007, 56(4): 2434-2441. doi: 10.7498/aps.56.2434
    [15] Liu Lei, Xu Sheng-Hua, Liu Jie, Duan Li, Sun Zhi-Wei, Liu Ren-Xiao, Dong Peng. Crystallization of charged colloidal particles: an experimental study. Acta Physica Sinica, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [16] Yang Tao, He Dong-Hui, Zhang Qing-Lan, Ma Hong-Ru. Effective interaction between charged plane and charged colloidal particle in electrolyte. Acta Physica Sinica, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [17] YAN JIA-REN, MEI YU-PING. INTERACTION BETWEEN SOLITONS IN OPTICAL FIBERS. Acta Physica Sinica, 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [18] DAI CHANG-JIAN. INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [19] QIAN ZU-WEN. SOUND INTERACTION AMONG SPHERICAL PARTICLES. Acta Physica Sinica, 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
    [20] СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ СТРАННЫХ ЧАСТИЦ. Acta Physica Sinica, 1962, 18(7): 334-378. doi: 10.7498/aps.18.334
Metrics
  • Abstract views:  10441
  • PDF Downloads:  658
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2016
  • Accepted Date:  12 August 2016
  • Published Online:  05 September 2016

/

返回文章
返回