Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization and analysis of microscale superlubricity graphite surface

Shi Yun-Sheng Liu Bing-Qi Yang Xing Dong Hua-Lai

Citation:

Characterization and analysis of microscale superlubricity graphite surface

Shi Yun-Sheng, Liu Bing-Qi, Yang Xing, Dong Hua-Lai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Superlubricity may be the ideal and final solution for friction and wear.Superlubricity on a micrometer scale based on an excellent self-retraction phenomenon has been observed and realized under ambient conditions recently.But not all of the graphite interfaces can realize superlubricity even they are incommensurate.Therefore,in-depth studies of graphite interfaces are needed to find out the factors which prevent the superlubricity for being realized.For this reason, microscopic graphite mesas are fabricated on a highly oriented pyrolytic graphite in this paper to obtain superlubricity interfaces.After poor quality graphite layers are mechanically exfoliated from the highly oriented pyrolytic graphite,a silicon dioxide film is grown on a new graphite surface by plasma-enhanced chemical vapor deposition.Then the film is coated with photoresist.Microscopic photoresist square pattern is defined by electron beam lithography and used as a mask for reactive ion etching the SiO2 and highly oriented pyrolytic graphite to define graphite mesas.The graphite interfaces are obtained by shearing the graphite mesas by tungsten tips.Some of them are super lubricative,while others are not. To study the graphite interfaces,atomic force microscope is used to characterize the morphologies of graphite mesas.The edges of graphite contact surfaces are also tested by energy dispersive spectrometer (EDS) and X ray photoelectron spectroscopy (XPS).The morphologies of the four graphite surfaces show that the superlubricity surfaces are atomically flat while other surfaces have many defects such as steps and tears.These results are consistent with those from the stone wall model of graphite crystal structure.The results of EDS and XPS show that there are many oxygen-containing bonds at the edges of the graphite surfaces.It is found that the polycrystalline structure of the highly oriented pyrolytic graphite plays an important role in the forming process of graphite interface and can affect the quality of the graphite interface.The quality of the graphite surface will determine whether the superlubricity can be realized.Besides the inner of graphite interface,the edges of the interfaces can also hinder the superlubricity from being realized.There are a large number of induced chemical bonds and the adsorbed physical bonds adhered to the edge of the graphite contact surfaces.When these bonds are broken,the energy is required.These bonds are the origin of the resistance when the graphite mesa is sheared away from the contact surface and causes friction force when the contact surface is relatively sliding along the other contact surface even the interface is super lubricative. The results show that the polycrystalline structure of the highly oriented pyrolytic graphite can affect the quality of the graphite interface and determine whether the superlubricity can be realized.For the destruction of bonds sticking at the interface edge requires energy,the edge of the contact surface can cause the friction force of superlubricity.It is indicated that increasing the sizes of the graphite grains is beneficial to the realization of large area superlubricity.Using high temperature annealing or other methods to reduce the adsorbed bonds of the graphite edges will also reduce the frictional resistance in the process of superlubricity.
      Corresponding author: Yang Xing, yangxing@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51375263) and the National Major Scientific Research Program of China (Grant No. 2013CB934200).
    [1]

    Erdemir A, Martin J M 2007 Superlubricity (New York:Elsevier) p253

    [2]

    Achanta S, Celis J P 2015 Fundamentals of Friction and Wear on the Nanoscale (Switzerland:Springer International Publishing) p631

    [3]

    Zheng Q S, Liu Z 2014 Friction 2 182

    [4]

    Deng Z, Rao W Q, Ren T H, Yu L G, Liu W M, Yu X L 2001 Tribology 21 494 (in Chinese)[邓昭, 饶文琦, 任天辉, 余来贵, 刘维民, 余新良2001摩擦学学报21 494]

    [5]

    Wu H Y, Lei Y, Wu H X, Wang J F 2015 Mater. Rev. 29 65 (in Chinese)[吴红艳, 雷勇, 吴红霞, 王俊锋2015材料导报29 65]

    [6]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

    [7]

    Hirano M, Shinjo K, Murata Y 1991 Phys. Rev. Lett. 67 2642

    [8]

    Martin J M, Donnet C, Le Mogne T, Epicier T 1993 Phys. Rev. B 48 10583

    [9]

    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W 2004 Phys. Rev. Lett. 92 126101

    [10]

    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz U D 2008 Phys. Rev. Lett. 101 125505

    [11]

    Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R, Hone J 2010 Science 328 76

    [12]

    Koren E, Lörtscher E, Rawlings C, Knoll A, Duerig U 2015 Science 348 679

    [13]

    Zheng Q S, Jiang B, Liu S, Weng Y, Lu L, Xue Q, Zhu J, Jiang Q, Wang S, Peng L 2008 Phys. Rev. Lett. 100 067205

    [14]

    Liu Z, Yang J, Grey F, Liu J, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q S 2012 Phys. Rev. Lett. 108 205503

    [15]

    Liu Z, Zhang S M, Yang J R, Liu J Z, Yang Y L, Zheng Q S 2012 Acta Mech. Sin. 28 978

    [16]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Zheng Q S 2013 Phys. Rev. Lett. 110 255504

    [17]

    Wang W, Dai S, Li X, Yang J R, Srolovitz D J, Zheng Q S 2015 Nat. Commun. 6 7853

    [18]

    Lu X K, Yu M, Huang H, Ruoff R S 1999 Nanotechnology 10 269

    [19]

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102 (in Chinese)[傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培2015物理学报64 016102]

    [20]

    Park S, Floresca H C, Suh Y, Kim M J 2010 Carbon 48 797

    [21]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海2014物理学报63 056101]

  • [1]

    Erdemir A, Martin J M 2007 Superlubricity (New York:Elsevier) p253

    [2]

    Achanta S, Celis J P 2015 Fundamentals of Friction and Wear on the Nanoscale (Switzerland:Springer International Publishing) p631

    [3]

    Zheng Q S, Liu Z 2014 Friction 2 182

    [4]

    Deng Z, Rao W Q, Ren T H, Yu L G, Liu W M, Yu X L 2001 Tribology 21 494 (in Chinese)[邓昭, 饶文琦, 任天辉, 余来贵, 刘维民, 余新良2001摩擦学学报21 494]

    [5]

    Wu H Y, Lei Y, Wu H X, Wang J F 2015 Mater. Rev. 29 65 (in Chinese)[吴红艳, 雷勇, 吴红霞, 王俊锋2015材料导报29 65]

    [6]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

    [7]

    Hirano M, Shinjo K, Murata Y 1991 Phys. Rev. Lett. 67 2642

    [8]

    Martin J M, Donnet C, Le Mogne T, Epicier T 1993 Phys. Rev. B 48 10583

    [9]

    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W 2004 Phys. Rev. Lett. 92 126101

    [10]

    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz U D 2008 Phys. Rev. Lett. 101 125505

    [11]

    Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R, Hone J 2010 Science 328 76

    [12]

    Koren E, Lörtscher E, Rawlings C, Knoll A, Duerig U 2015 Science 348 679

    [13]

    Zheng Q S, Jiang B, Liu S, Weng Y, Lu L, Xue Q, Zhu J, Jiang Q, Wang S, Peng L 2008 Phys. Rev. Lett. 100 067205

    [14]

    Liu Z, Yang J, Grey F, Liu J, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q S 2012 Phys. Rev. Lett. 108 205503

    [15]

    Liu Z, Zhang S M, Yang J R, Liu J Z, Yang Y L, Zheng Q S 2012 Acta Mech. Sin. 28 978

    [16]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Zheng Q S 2013 Phys. Rev. Lett. 110 255504

    [17]

    Wang W, Dai S, Li X, Yang J R, Srolovitz D J, Zheng Q S 2015 Nat. Commun. 6 7853

    [18]

    Lu X K, Yu M, Huang H, Ruoff R S 1999 Nanotechnology 10 269

    [19]

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102 (in Chinese)[傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培2015物理学报64 016102]

    [20]

    Park S, Floresca H C, Suh Y, Kim M J 2010 Carbon 48 797

    [21]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海2014物理学报63 056101]

  • [1] Wu Chun-Yan, Du Xiao-Wei, Zhou Lin, Cai Qi, Jin Yan, Tang Lin, Zhang Han-Ge, Hu Guo-Hui, Jin Qing-Hui. Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors. Acta Physica Sinica, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [2] Li Yan-Ru, He Qiu-Xiang, Wang Fang, Xiang Lang, Zhong Jian-Xin, Meng Li-Jun. Dynamical evolution study of metal nanofilms on graphite substrates. Acta Physica Sinica, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [3] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [4] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [5] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [6] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [7] Lei You-Ming, Li Yi-Wei, Zhao Yun-Ping. Effect of the oscillation of substrate potential in driven Frenkel-Kontorova chains. Acta Physica Sinica, 2014, 63(22): 220502. doi: 10.7498/aps.63.220502
    [8] Han Wen-Peng, Shi Yan-Meng, Li Xiao-Li, Luo Shi-Qiang, Lu Yan, Tan Ping-Heng. The numerical-aperture-dependent optical contrast and thickness determination of ultrathin flakes of two-dimensional atomic crystals: A case of graphene multilayers. Acta Physica Sinica, 2013, 62(11): 110702. doi: 10.7498/aps.62.110702
    [9] Jia Ru-Juan, Wang Cang-Long, Yang Yang, Gou Xue-Qiang, Chen Jian-Min, Duan Wen-Shan. Friction phenomena in two-dimensional Frenkel-Kontorova model with hexagonal symmetry lattice. Acta Physica Sinica, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [10] Kang Chao-Yang, Tang Jun, Li Li-Min, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang. Growth and characterization of graphene on SiO2/Si substrate. Acta Physica Sinica, 2012, 61(3): 037302. doi: 10.7498/aps.61.037302
    [11] Zhang Zhi-Hai, Sun Ji-Zhong, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energy exchanges between single hydrogen and graphite(001). Acta Physica Sinica, 2012, 61(4): 047901. doi: 10.7498/aps.61.047901
    [12] Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001). Acta Physica Sinica, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [13] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [14] Zhang Hong-Yu, Zhang Shao-Hua, Liang He, Liu Yu-Hong, Luo Jian-Bin. Molecular alignment of nano-thin film using Raman spectroscopy. Acta Physica Sinica, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [15] Huang Liang-Feng, Li Yan-Ling, Ni Mei-Yan, Wang Xian-Long, Zhang Guo-Ren, Zeng Zhi. Lattice dynamics of hydrogen-substituted graphene systems. Acta Physica Sinica, 2009, 58(13): 306-S312. doi: 10.7498/aps.58.306
    [16] Chen Xiang-Lei, Kong Wei, Weng Hui-Min, Ye Bang-Jiao. Analysis of positron annihilation in carbon allotropes. Acta Physica Sinica, 2008, 57(5): 3271-3275. doi: 10.7498/aps.57.3271
    [17] Luo Yu-Feng, Zhong Cheng, Zhang Li, Yan Xue-Jian, Li Jin, Jiang Yi-Ming. An in situ method for characterizing the kinetics of the oxidation process of copper thin films via sheet resistance. Acta Physica Sinica, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [18] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] Du You-Wei, Wang Zhi-Ming, Ni Gang, Xing Ding-Yu, Xu Qing-Yu. Huge magnetoresistance effect of highly oriented pyrolytic graphite. Acta Physica Sinica, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [20] XU SU-JUAN, MEN SHOU-QIANG, WANG BIAO, LU KUN-QUAN. STUDY OF A ELECTRORHEOLOGICAL FLUID:TiO2 COATING GRAPHITE/SILICONE OIL. Acta Physica Sinica, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
Metrics
  • Abstract views:  6079
  • PDF Downloads:  241
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2016
  • Accepted Date:  06 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回