搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载能氢同位素原子与石墨(001)面碰撞的分子动力学研究

孙继忠 张治海 刘升光 王德真

引用本文:
Citation:

载能氢同位素原子与石墨(001)面碰撞的分子动力学研究

孙继忠, 张治海, 刘升光, 王德真

Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001)

Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen
PDF
导出引用
  • 采用分子动力学方法研究了载能H同位素原子与石墨晶体碰撞的同位素效应. 碳氢系统的强共价键作用和石墨层间的弱van der Waals力分别用REBO和Ito半经验势函数来描述. 研究发现: 随着入射原子质量的增加, 上表面吸附几率和反射几率的峰值都会向高能区移动; 相比于H, 2H入射原子, 3H入射原子具有较高的吸附几率——包括上表面吸附和内部吸附; 穿透石墨晶体, 2H, 3H原子所需的能量较高; 原子质量和原子入射能量都会影响入射粒子与不同石墨层之间的能量传递过程. 这些结果对理解碳基材料的3H滞留机制有重要意义.
    Molecular dynamics simulation is applied to the investigation of the isotopic effects during a hydrogen isotope atom bombarding the crystalline graphite containing four graphene sheets. Both Brenner's reactive empirical bond order potential and Ito's interlayer intermolecular potential are adopted to represent `àBAB" stacking of graphite. The simulation results reveal that the mass of the incident species has a big influence on the absorption on and the reflection from the upside graphite surface, the peaks of which shift toward higher end side of incident energy as the mass increases. The absorption coefficient of the incident tritium is large, compared with that of the incident either hydrogen or deuterium. To penetrate the four- sheet graphite at some striking locations, deuterium and tritium need more kinetic energy. It is found that both the mass and the incident energy of the incident species affect the energy transfer to background substrate. These results would be important for understanding the tritium retention occurring in fusion devices.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2008CB717801, 2010CB832901) 和中央高校基本科研业务费专项资金资助(DUT10ZD111)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2008CB717801 and 2010CB832901) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT10ZD111).
    [1]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [2]

    Liu S G, Sun J Z, Dai S Y, Stirner T,Wang D Z 2010 J. Appl. Phys.108 073302

    [3]

    Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M,Pacher H D, Pacher GW, Sugihara M 1995 J. Nucl. Mater. 220 73

    [4]

    Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L,Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂,陈向东 2001 物理学报 50 507]

    [5]

    Tanabe T, Masaki K, Sugiyama K, Yoshida M 2009 Phys. Scr.T138 014006

    [6]

    Alimov V Kh, Roth J 2007 Phys. Scr. T128 6

    [7]

    Salonen S, Nordlund K, Keinonen J, Wu C H 2001 Phys. Rev. B63 195415

    [8]

    Sun J Z, Li S Y, Stirner T, Chen J L,Wang D Z 2010 J. Appl. Phys.107 113533

    [9]

    Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153

    [10]

    Wang Z X, Yu G Q, Ruan M L, Zhu F Y, Zhu D Z, Pan H C, Xu HJ 2000 Acta Phys. Sin. 49 1524 (in Chinese) [王震遐, 俞国庆, 阮美龄, 朱福英,朱德彰, 潘浩昌, 徐洪杰 2000 物理学报 49 1524]

    [11]

    Hu X J, Dai Y B, He Y X, Shen H S, Li R B 2001 Acta Phys. Sin.51 1388 (in Chinese) [胡晓君,戴永兵, 何贤昶, 沈荷生, 李荣斌 2001 物理学报 51 1388]

    [12]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455(in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006物理学报 55 5455]

    [13]

    Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592

    [14]

    Ito A, Nakamura H 2006 J. Plasma Phys. 72 805

    [15]

    Ito A, Nakamura H, Takayama A 2007 arXiv: 0703377 [condmat]

    [16]

    Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl.Mater. 390 183

    [17]

    Salonen S, Nordlund K, Keinonen J,Wu C H 2001 J. Nucl. Mater.290 144

    [18]

    Marian J, Zepeda-Ruiz L A, Couto N, Bringa E M, Gilmer G H,Stangeby P C, Rognlien T D 2007 J. Appl. Phys. 101 044506

    [19]

    Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys.Sin. 60 057901 (in Chinese) [李守阳,孙继忠, 张治海, 刘升光, 王德真 2011 物理学报 60 057901]item Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012

    [20]

    Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61047901 (in Chinese) [张治海,孙继忠, 刘升光, 王德真 2012 物理学报 61 047901]

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B,Sinnott S B 2002 J. Phys. Cond. Matter 14 783

    [22]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [23]

    Linhard J, Scharff M 1961 Phys. Rev. 124 128

  • [1]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [2]

    Liu S G, Sun J Z, Dai S Y, Stirner T,Wang D Z 2010 J. Appl. Phys.108 073302

    [3]

    Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M,Pacher H D, Pacher GW, Sugihara M 1995 J. Nucl. Mater. 220 73

    [4]

    Li Q C, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L,Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂,陈向东 2001 物理学报 50 507]

    [5]

    Tanabe T, Masaki K, Sugiyama K, Yoshida M 2009 Phys. Scr.T138 014006

    [6]

    Alimov V Kh, Roth J 2007 Phys. Scr. T128 6

    [7]

    Salonen S, Nordlund K, Keinonen J, Wu C H 2001 Phys. Rev. B63 195415

    [8]

    Sun J Z, Li S Y, Stirner T, Chen J L,Wang D Z 2010 J. Appl. Phys.107 113533

    [9]

    Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153

    [10]

    Wang Z X, Yu G Q, Ruan M L, Zhu F Y, Zhu D Z, Pan H C, Xu HJ 2000 Acta Phys. Sin. 49 1524 (in Chinese) [王震遐, 俞国庆, 阮美龄, 朱福英,朱德彰, 潘浩昌, 徐洪杰 2000 物理学报 49 1524]

    [11]

    Hu X J, Dai Y B, He Y X, Shen H S, Li R B 2001 Acta Phys. Sin.51 1388 (in Chinese) [胡晓君,戴永兵, 何贤昶, 沈荷生, 李荣斌 2001 物理学报 51 1388]

    [12]

    Li R, Hu Y Z, Wang H, Zhang Y J 2006 Acta Phys. Sin. 55 5455(in Chinese) [李瑞, 胡元中, 王慧, 张宇军 2006物理学报 55 5455]

    [13]

    Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592

    [14]

    Ito A, Nakamura H 2006 J. Plasma Phys. 72 805

    [15]

    Ito A, Nakamura H, Takayama A 2007 arXiv: 0703377 [condmat]

    [16]

    Ito A, Wang Y, Irle S, Morokuma K, Nakamura H 2009 J. Nucl.Mater. 390 183

    [17]

    Salonen S, Nordlund K, Keinonen J,Wu C H 2001 J. Nucl. Mater.290 144

    [18]

    Marian J, Zepeda-Ruiz L A, Couto N, Bringa E M, Gilmer G H,Stangeby P C, Rognlien T D 2007 J. Appl. Phys. 101 044506

    [19]

    Li S Y, Sun J Z, Zhang Z H, Liu S G, Wang D Z 2011 Acta Phys.Sin. 60 057901 (in Chinese) [李守阳,孙继忠, 张治海, 刘升光, 王德真 2011 物理学报 60 057901]item Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012

    [20]

    Zhang Z H, Sun J Z, Liu S G, Wang D Z 2012 Acta Phys. Sin. 61047901 (in Chinese) [张治海,孙继忠, 刘升光, 王德真 2012 物理学报 61 047901]

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B,Sinnott S B 2002 J. Phys. Cond. Matter 14 783

    [22]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [23]

    Linhard J, Scharff M 1961 Phys. Rev. 124 128

计量
  • 文章访问数:  4560
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-26
  • 修回日期:  2011-07-11
  • 刊出日期:  2012-03-05

载能氢同位素原子与石墨(001)面碰撞的分子动力学研究

  • 1. 大连理工大学物理与光电工程学院, 大连 116024
    基金项目: 国家重点基础研究发展计划(批准号: 2008CB717801, 2010CB832901) 和中央高校基本科研业务费专项资金资助(DUT10ZD111)资助的课题.

摘要: 采用分子动力学方法研究了载能H同位素原子与石墨晶体碰撞的同位素效应. 碳氢系统的强共价键作用和石墨层间的弱van der Waals力分别用REBO和Ito半经验势函数来描述. 研究发现: 随着入射原子质量的增加, 上表面吸附几率和反射几率的峰值都会向高能区移动; 相比于H, 2H入射原子, 3H入射原子具有较高的吸附几率——包括上表面吸附和内部吸附; 穿透石墨晶体, 2H, 3H原子所需的能量较高; 原子质量和原子入射能量都会影响入射粒子与不同石墨层之间的能量传递过程. 这些结果对理解碳基材料的3H滞留机制有重要意义.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回