搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微米级超润滑石墨接触面的表征与分析

史云胜 刘秉琦 杨兴 董华来

引用本文:
Citation:

微米级超润滑石墨接触面的表征与分析

史云胜, 刘秉琦, 杨兴, 董华来

Characterization and analysis of microscale superlubricity graphite surface

Shi Yun-Sheng, Liu Bing-Qi, Yang Xing, Dong Hua-Lai
PDF
导出引用
  • 超润滑可能是解决摩擦磨损问题的理想方案.目前已经能够在大气环境下实现基于石墨的微米尺度超润滑,但石墨接触面在超润滑实现过程中的影响还需要深入研究.为此,本文用电子束曝光及反应离子刻蚀方法在高定向热解石墨上加工出微米尺度的氧化硅/石墨方台结构,并用钨针尖推开方台的上部获得超润滑的石墨接触面.然后用原子力显微镜对多个石墨接触面进行了形貌表征,并使用能谱仪及X射线光电子能谱对石墨接触面的边缘进行测试.研究发现,高定向热解石墨的多晶结构在接触面的形成过程中有重要影响,能够决定接触面的质量进而决定超润滑能否实现.石墨接触面的边缘存在大量加工中引入的化学键及在大气中吸附的物理键,这些键是推开石墨方台形成接触面时阻力的来源,并在接触面发生相对滑动时表现为摩擦力.本文通过对具有微米尺寸的超润滑石墨接触面进行研究,明确了接触面内部及边缘影响超润滑实现的规律,对大面积超润滑的实现及应用能够提供有益的帮助.
    Superlubricity may be the ideal and final solution for friction and wear.Superlubricity on a micrometer scale based on an excellent self-retraction phenomenon has been observed and realized under ambient conditions recently.But not all of the graphite interfaces can realize superlubricity even they are incommensurate.Therefore,in-depth studies of graphite interfaces are needed to find out the factors which prevent the superlubricity for being realized.For this reason, microscopic graphite mesas are fabricated on a highly oriented pyrolytic graphite in this paper to obtain superlubricity interfaces.After poor quality graphite layers are mechanically exfoliated from the highly oriented pyrolytic graphite,a silicon dioxide film is grown on a new graphite surface by plasma-enhanced chemical vapor deposition.Then the film is coated with photoresist.Microscopic photoresist square pattern is defined by electron beam lithography and used as a mask for reactive ion etching the SiO2 and highly oriented pyrolytic graphite to define graphite mesas.The graphite interfaces are obtained by shearing the graphite mesas by tungsten tips.Some of them are super lubricative,while others are not. To study the graphite interfaces,atomic force microscope is used to characterize the morphologies of graphite mesas.The edges of graphite contact surfaces are also tested by energy dispersive spectrometer (EDS) and X ray photoelectron spectroscopy (XPS).The morphologies of the four graphite surfaces show that the superlubricity surfaces are atomically flat while other surfaces have many defects such as steps and tears.These results are consistent with those from the stone wall model of graphite crystal structure.The results of EDS and XPS show that there are many oxygen-containing bonds at the edges of the graphite surfaces.It is found that the polycrystalline structure of the highly oriented pyrolytic graphite plays an important role in the forming process of graphite interface and can affect the quality of the graphite interface.The quality of the graphite surface will determine whether the superlubricity can be realized.Besides the inner of graphite interface,the edges of the interfaces can also hinder the superlubricity from being realized.There are a large number of induced chemical bonds and the adsorbed physical bonds adhered to the edge of the graphite contact surfaces.When these bonds are broken,the energy is required.These bonds are the origin of the resistance when the graphite mesa is sheared away from the contact surface and causes friction force when the contact surface is relatively sliding along the other contact surface even the interface is super lubricative. The results show that the polycrystalline structure of the highly oriented pyrolytic graphite can affect the quality of the graphite interface and determine whether the superlubricity can be realized.For the destruction of bonds sticking at the interface edge requires energy,the edge of the contact surface can cause the friction force of superlubricity.It is indicated that increasing the sizes of the graphite grains is beneficial to the realization of large area superlubricity.Using high temperature annealing or other methods to reduce the adsorbed bonds of the graphite edges will also reduce the frictional resistance in the process of superlubricity.
      通信作者: 杨兴, yangxing@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51375263)和国家重大科学研究计划(批准号:2013CB934200)资助的课题.
      Corresponding author: Yang Xing, yangxing@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51375263) and the National Major Scientific Research Program of China (Grant No. 2013CB934200).
    [1]

    Erdemir A, Martin J M 2007 Superlubricity (New York:Elsevier) p253

    [2]

    Achanta S, Celis J P 2015 Fundamentals of Friction and Wear on the Nanoscale (Switzerland:Springer International Publishing) p631

    [3]

    Zheng Q S, Liu Z 2014 Friction 2 182

    [4]

    Deng Z, Rao W Q, Ren T H, Yu L G, Liu W M, Yu X L 2001 Tribology 21 494 (in Chinese)[邓昭, 饶文琦, 任天辉, 余来贵, 刘维民, 余新良2001摩擦学学报21 494]

    [5]

    Wu H Y, Lei Y, Wu H X, Wang J F 2015 Mater. Rev. 29 65 (in Chinese)[吴红艳, 雷勇, 吴红霞, 王俊锋2015材料导报29 65]

    [6]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

    [7]

    Hirano M, Shinjo K, Murata Y 1991 Phys. Rev. Lett. 67 2642

    [8]

    Martin J M, Donnet C, Le Mogne T, Epicier T 1993 Phys. Rev. B 48 10583

    [9]

    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W 2004 Phys. Rev. Lett. 92 126101

    [10]

    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz U D 2008 Phys. Rev. Lett. 101 125505

    [11]

    Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R, Hone J 2010 Science 328 76

    [12]

    Koren E, Lörtscher E, Rawlings C, Knoll A, Duerig U 2015 Science 348 679

    [13]

    Zheng Q S, Jiang B, Liu S, Weng Y, Lu L, Xue Q, Zhu J, Jiang Q, Wang S, Peng L 2008 Phys. Rev. Lett. 100 067205

    [14]

    Liu Z, Yang J, Grey F, Liu J, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q S 2012 Phys. Rev. Lett. 108 205503

    [15]

    Liu Z, Zhang S M, Yang J R, Liu J Z, Yang Y L, Zheng Q S 2012 Acta Mech. Sin. 28 978

    [16]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Zheng Q S 2013 Phys. Rev. Lett. 110 255504

    [17]

    Wang W, Dai S, Li X, Yang J R, Srolovitz D J, Zheng Q S 2015 Nat. Commun. 6 7853

    [18]

    Lu X K, Yu M, Huang H, Ruoff R S 1999 Nanotechnology 10 269

    [19]

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102 (in Chinese)[傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培2015物理学报64 016102]

    [20]

    Park S, Floresca H C, Suh Y, Kim M J 2010 Carbon 48 797

    [21]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海2014物理学报63 056101]

  • [1]

    Erdemir A, Martin J M 2007 Superlubricity (New York:Elsevier) p253

    [2]

    Achanta S, Celis J P 2015 Fundamentals of Friction and Wear on the Nanoscale (Switzerland:Springer International Publishing) p631

    [3]

    Zheng Q S, Liu Z 2014 Friction 2 182

    [4]

    Deng Z, Rao W Q, Ren T H, Yu L G, Liu W M, Yu X L 2001 Tribology 21 494 (in Chinese)[邓昭, 饶文琦, 任天辉, 余来贵, 刘维民, 余新良2001摩擦学学报21 494]

    [5]

    Wu H Y, Lei Y, Wu H X, Wang J F 2015 Mater. Rev. 29 65 (in Chinese)[吴红艳, 雷勇, 吴红霞, 王俊锋2015材料导报29 65]

    [6]

    Hirano M, Shinjo K 1990 Phys. Rev. B 41 11837

    [7]

    Hirano M, Shinjo K, Murata Y 1991 Phys. Rev. Lett. 67 2642

    [8]

    Martin J M, Donnet C, Le Mogne T, Epicier T 1993 Phys. Rev. B 48 10583

    [9]

    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W, Heimberg J A, Zandbergen H W 2004 Phys. Rev. Lett. 92 126101

    [10]

    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz U D 2008 Phys. Rev. Lett. 101 125505

    [11]

    Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R, Hone J 2010 Science 328 76

    [12]

    Koren E, Lörtscher E, Rawlings C, Knoll A, Duerig U 2015 Science 348 679

    [13]

    Zheng Q S, Jiang B, Liu S, Weng Y, Lu L, Xue Q, Zhu J, Jiang Q, Wang S, Peng L 2008 Phys. Rev. Lett. 100 067205

    [14]

    Liu Z, Yang J, Grey F, Liu J, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q S 2012 Phys. Rev. Lett. 108 205503

    [15]

    Liu Z, Zhang S M, Yang J R, Liu J Z, Yang Y L, Zheng Q S 2012 Acta Mech. Sin. 28 978

    [16]

    Yang J, Liu Z, Grey F, Xu Z, Li X, Liu Y, Zheng Q S 2013 Phys. Rev. Lett. 110 255504

    [17]

    Wang W, Dai S, Li X, Yang J R, Srolovitz D J, Zheng Q S 2015 Nat. Commun. 6 7853

    [18]

    Lu X K, Yu M, Huang H, Ruoff R S 1999 Nanotechnology 10 269

    [19]

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102 (in Chinese)[傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培2015物理学报64 016102]

    [20]

    Park S, Floresca H C, Suh Y, Kim M J 2010 Carbon 48 797

    [21]

    Li R, Sun D H 2014 Acta Phys. Sin. 63 056101 (in Chinese)[李瑞, 孙丹海2014物理学报63 056101]

  • [1] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [2] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [3] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [4] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [5] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [6] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [7] 雷佑铭, 李毅伟, 赵云平. Frenkel-Kontorova模型中基底势振动的影响. 物理学报, 2014, 63(22): 220502. doi: 10.7498/aps.63.220502
    [8] 韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒. 石墨烯等二维原子晶体薄片样品的光学衬度计算及其层数表征. 物理学报, 2013, 62(11): 110702. doi: 10.7498/aps.62.110702
    [9] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [10] 康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强. SiO2/Si衬底上石墨烯的制备与结构表征. 物理学报, 2012, 61(3): 037302. doi: 10.7498/aps.61.037302
    [11] 张治海, 孙继忠, 刘升光, 王德真. 载能氢原子与石墨(001)面碰撞过程中的能量传递行为的分子动力学研究. 物理学报, 2012, 61(4): 047901. doi: 10.7498/aps.61.047901
    [12] 孙继忠, 张治海, 刘升光, 王德真. 载能氢同位素原子与石墨(001)面碰撞的分子动力学研究. 物理学报, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [13] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [14] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术. 物理学报, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [15] 黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉. 氢掺杂单层石墨体系的晶格动力学研究. 物理学报, 2009, 58(13): 306-S312. doi: 10.7498/aps.58.306
    [16] 陈祥磊, 孔 伟, 翁惠民, 叶邦角. 碳同素异形体中的正电子理论. 物理学报, 2008, 57(5): 3271-3275. doi: 10.7498/aps.57.3271
    [17] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 都有为, 王志明, 倪刚, 邢定钰, 徐庆宇. 高度取向石墨的巨磁电阻效应. 物理学报, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [20] 许素娟, 门守强, 王 彪, 陆坤权. TiO2包覆石墨颗粒/硅油电流变液的研究. 物理学报, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
计量
  • 文章访问数:  4768
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-09-06
  • 刊出日期:  2016-12-05

/

返回文章
返回