Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent research progress of relaxation performances of defects in ZnO-Bi2O3 varistor ceamics

Zhao Xiao-Qiang Zhao Xue-Tong Xu Chao Li Wei-Wei Ren Lu-Lu Liao Rui-Jin Li Jian-Ying

Citation:

Recent research progress of relaxation performances of defects in ZnO-Bi2O3 varistor ceamics

Zhao Xiao-Qiang, Zhao Xue-Tong, Xu Chao, Li Wei-Wei, Ren Lu-Lu, Liao Rui-Jin, Li Jian-Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • ZnO varistor ceramics have been widely applied to surge absorption and over-voltage protection in electronic circuit and power system because of their excellent non-ohmic characteristics.Therefore,the reaserch on ZnO varistor ceramic has long been a subject of interest for scholars and industrial circles.At present,the conductance theory of ZnO varistor ceramic has been widely studied and reviewed,and several models such as space charge limited current model,NordheimFowler tunneling current model,and Schottky barrier model have been proposed to describe the electronic transmission process and explain the non-ohmic behavior of ZnO ceramic varistor.However,the relationships of the defect structure and defect relaxation with the electrical property of ZnO varistor ceramic remain unclear,which becomes a challenge to developing new ZnO varistor ceramics.In this paper,comments on defect structures and defect types of ZnO ceramics are given,and the theortical calculation of the intrinsic point defects is discussed.Besides,the characterization technologies of the defect relaxations are introduced.The results show that the dielectric loss spectra are widely used to describe the relaxation of ZnO ceramic varistor,especially the spectra in the low frequency can provide more information about defect relaxation of ZnO ceramic varistor.It is also found that the frequency spectra of admittance in a wide temperature range and the temperature spectra of admittance in a wide frequency range play an equivalent role in characterizing the defect relaxation of ZnO ceramic varistor.The thermally stimulated current is considered to be an effective method to verify the relaxation polarization mechanism of the defects.The deep level transient spectroscopy can characterize the intrinsic and extrinsic defect relaxation processes.Moreover,several theories of relaxation mechanisms such as the Cole-Cole theory,Havriliak-Negami theory and Cole-Davidson theory are proposed to analyze the relaxation phenomena of ZnO ceramic varistors.It is suggested that the electric modulus spectrum combined with Cole-Davidson theory is more effective to characterize the defect relaxations in a wide temperature range.From the electrical degradation results, it is found that the extrinsic defect relaxation at grain boundary interface is closely related to the electrical property of ZnO ceramic varistor.A circuit model is also obtained to establish the correlation between defect relaxation and electrical performance of ZnO ceramic varistor.Therefore,the review on defect relaxations may offer some new ideas to optimize the electrical properties of ZnO ceramic varistors by modifying the defect structures.
      Corresponding author: Zhao Xue-Tong, zxt201314@cqu.edu.cn
    • Funds: Project supported the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51407019), the Fundamental Research Fund for the Central Universities, China (Grant No. 106112015CDJZR155509), and the Research Fund from the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, China (Grant No. 2007DA10512716302).
    [1]

    Moulson A J, Herbert J M 2003 Electroceramics (Vol. 2) (Chichester:Wiley) pp150-156

    [2]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [3]

    Wang Z L, Li S T 2009 Manufacture and Application of ZnO Varistor Ceramics (Beijing:Science Press) pp1-3(in Chinese)[王振林, 李盛涛2009氧化锌压敏陶瓷制造及应用(北京:科学出版社)第1–3页]

    [4]

    Levinson L M, Philipp H R 1975 J. Appl. Phys. 46 1332

    [5]

    Matsuoka M 1971 Jpn. J. Appl. Phys 10 736

    [6]

    Mahan G D, Levinson L M, Philipp H R 1979 J. Appl. Phys. 50 2799

    [7]

    Pike G E 1981 Mater. Res. Soc. Symp. Proc. 5 369

    [8]

    Blatter G, Greuter F 1986 Phys. Rev. B 34 8555

    [9]

    Choi J S, Yo C H 1976 J. Phys. Chem. Solids 37 1149

    [10]

    Allsopp H J, Roberts J P 1959 Trans. Faraday Soc. 55 1386

    [11]

    DupontPavlovsky N, Caralp F, Delhaes P, Amiell J 1976 Phys. Status Solidi A 35 615

    [12]

    Li S T, Cheng P F, Wang Y P, Zhu B 2007 Insulators and Surge Arresters 5 19 (in Chinese)[李盛涛, 成鹏飞, 王玉平, 朱斌2007电瓷避雷器5 19]

    [13]

    Levin J D 1975 CRC Crit. Rev. Sol. Stat. Sci. 5 597

    [14]

    Blatter G, Greuter F 1986 Phys. Rev. B 33 3952

    [15]

    Castro M S, Aldao C M 1993 Appl. Phys. Lett. 63 1077

    [16]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817

    [17]

    He J L, Cheng C L, Hu J 2016 AIP Adv. 6 030701

    [18]

    Li J Y, Li S T, Cheng P F, Alim M A 2015 J. Mater. Sci. Mater. Electron. 26 4782

    [19]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [20]

    Chiou B S, Chung M C 1991 J. Electron. Mater. 20 885

    [21]

    Zhang M R, Liu F Y, Liu Z Y 1991 Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials Tokyo, Japan July 8-12, 1991 p513

    [22]

    Tsuda K, Mukae K 1989 J. Ceram. Soc. Jpn. 97 1211

    [23]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824

    [24]

    Look D C, Claflin B 2001 Phys. Status Soldi 41 624

    [25]

    Lin J J, Li S T, He J Q, Liu W F 2016 Int. J. Inorg. Mater. 31 981 (in Chinese)[蔺家骏, 李盛涛, 何锦强, 刘文凤2016无机材料学报31 981]

    [26]

    Li J Y, Li S T, Liu F Y, Alim M A 2006 J. Mater. Sci.:Mater. Electron. 17 211

    [27]

    Zhao X T, Li J Y, Jia R, Li S T 2013 Acta Phys. Sin. 62 077701 (in Chinese)[赵学童, 李建英, 贾然, 李盛涛2013物理学报62 077701]

    [28]

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 153103 (in Chinese)[赵学童, 李建英, 李欢, 李盛涛2012物理学报61 153103]

    [29]

    Addison W E 1953 Structural Principles in Inorganic Compounds (New York:Wiley) p57

    [30]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [31]

    Janotti A, van de WAlle C G 2007 Phys. Rev. B 76 165202

    [32]

    Janotti A, van de Walle G G 2005 Appl. Phys. Lett. 87 122

    [33]

    Eda K, Iga A, Matsuoka M 1979 Jpn. J. Appl. Phys. 18 997

    [34]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678

    [35]

    Kohan A F, Ceder G, Morgan D, van de Walle C G 2000 Phys. Rev. B 61 15019

    [36]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487

    [37]

    Levinson L M, Phillipp H R 1974 Appl. Phys. Lett. 24 75

    [38]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [39]

    Eda K 1989 IEEE Electr. Insul. Mag. 5 28

    [40]

    Selim A F, Gupta T K, Hower P L, Carlson W G 1980 J. Appl. Phys. 51 765

    [41]

    Levine J D 1971 J. Appl. Phys. 42 3991

    [42]

    Levinson L M, Philipp H R 1978 J. Appl. Phys. 49 6142

    [43]

    Cordaro J F, Shim Y, May J E 1986 J. Appl. Phys. 60 4186

    [44]

    Cheng P F, Li S T, Zhang L, Li J 2008 Appl. Phys. Lett. 93 012902

    [45]

    Greuter F, Blatter G 1990 Semicond. Sci. Technol. 5 111

    [46]

    Shim Y, Cordaro J F 1988 J. Appl. Phys. 64 3994

    [47]

    Shim Y, Cordaro J F 1988 J. Am. Ceram. Soc. 71 184

    [48]

    Wang Y P, Lee W I, Tseng T Y 1996 Appl. Phys. Lett. 69 1807

    [49]

    Lee W I, Young R L 1996 Appl. Phys. Lett. 69 526

    [50]

    Shohata N, Matsumura T, Ohno T 1980 Jpn. J. Appl. Phys. 19 1793

    [51]

    Simpson J C, Cordaro J F 1988 J. Appl. Phys. 63 1781

    [52]

    Leach C, Vernon-Parry K D, Ali N K 2010 J. Electroceram. 25 188

    [53]

    Rohatgi A, Pang S K, Gupta T K, Straub W D 1988 J. Appl. Phys. 63 5375

    [54]

    Ohbuchi Y, Yoshino J, Okamoto Y, Morimoto J 1999 J. Appl. Phys. 38 899

    [55]

    Fan J, Freer R 1994 J. Am. Ceram. Soc. 77 2663

    [56]

    Winston R A, Cordaro J F 1990 J. Appl. Phys. 68 6495

    [57]

    Han J, Mantas P Q, Senos A M R 2002 J. Eur. Ceram. Soc. 22 49

    [58]

    Levinson L M, Philipp H R 1986 J. Am. Ceram. Soc. Bull. 65 639

    [59]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing:Mechanical Industry Press) p151(in Chinese)[陈季丹, 刘子玉1982电介质物理学(北京:机械工业出版社)第151页]

    [60]

    Tsonos C, Kanapitsas A, Triantis D, Anastasiadis C, Stavrakas I, Pissis P, Neagu E 2011 Ceram. Int. 37 207

    [61]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [62]

    Andres-Verges M, West A R 1997 J. Electroceram. 1 125

    [63]

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701 (in Chinese)[李盛涛, 王辉, 林春江, 李建英2013物理学报62 087701]

    [64]

    Pathmanathan K, Stevens J R 1990 J. Appl. Phys. 68 5128

    [65]

    Davidson D W 1961 Can. J. Chem. 39 571

    [66]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [67]

    Gupta T K, Carlson W G, Hower P L 1981 J. Appl. Phys. 52 4104

    [68]

    Chen Z X, Lin G C, Fu G A 1998 Sci. China Ser. A:Math. Phys. Astron. 41 71

    [69]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [70]

    Al Abdullah K, Bui A, Loubiere A 1991 J. Appl. Phys. 69 4046

  • [1]

    Moulson A J, Herbert J M 2003 Electroceramics (Vol. 2) (Chichester:Wiley) pp150-156

    [2]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [3]

    Wang Z L, Li S T 2009 Manufacture and Application of ZnO Varistor Ceramics (Beijing:Science Press) pp1-3(in Chinese)[王振林, 李盛涛2009氧化锌压敏陶瓷制造及应用(北京:科学出版社)第1–3页]

    [4]

    Levinson L M, Philipp H R 1975 J. Appl. Phys. 46 1332

    [5]

    Matsuoka M 1971 Jpn. J. Appl. Phys 10 736

    [6]

    Mahan G D, Levinson L M, Philipp H R 1979 J. Appl. Phys. 50 2799

    [7]

    Pike G E 1981 Mater. Res. Soc. Symp. Proc. 5 369

    [8]

    Blatter G, Greuter F 1986 Phys. Rev. B 34 8555

    [9]

    Choi J S, Yo C H 1976 J. Phys. Chem. Solids 37 1149

    [10]

    Allsopp H J, Roberts J P 1959 Trans. Faraday Soc. 55 1386

    [11]

    DupontPavlovsky N, Caralp F, Delhaes P, Amiell J 1976 Phys. Status Solidi A 35 615

    [12]

    Li S T, Cheng P F, Wang Y P, Zhu B 2007 Insulators and Surge Arresters 5 19 (in Chinese)[李盛涛, 成鹏飞, 王玉平, 朱斌2007电瓷避雷器5 19]

    [13]

    Levin J D 1975 CRC Crit. Rev. Sol. Stat. Sci. 5 597

    [14]

    Blatter G, Greuter F 1986 Phys. Rev. B 33 3952

    [15]

    Castro M S, Aldao C M 1993 Appl. Phys. Lett. 63 1077

    [16]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817

    [17]

    He J L, Cheng C L, Hu J 2016 AIP Adv. 6 030701

    [18]

    Li J Y, Li S T, Cheng P F, Alim M A 2015 J. Mater. Sci. Mater. Electron. 26 4782

    [19]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [20]

    Chiou B S, Chung M C 1991 J. Electron. Mater. 20 885

    [21]

    Zhang M R, Liu F Y, Liu Z Y 1991 Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials Tokyo, Japan July 8-12, 1991 p513

    [22]

    Tsuda K, Mukae K 1989 J. Ceram. Soc. Jpn. 97 1211

    [23]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824

    [24]

    Look D C, Claflin B 2001 Phys. Status Soldi 41 624

    [25]

    Lin J J, Li S T, He J Q, Liu W F 2016 Int. J. Inorg. Mater. 31 981 (in Chinese)[蔺家骏, 李盛涛, 何锦强, 刘文凤2016无机材料学报31 981]

    [26]

    Li J Y, Li S T, Liu F Y, Alim M A 2006 J. Mater. Sci.:Mater. Electron. 17 211

    [27]

    Zhao X T, Li J Y, Jia R, Li S T 2013 Acta Phys. Sin. 62 077701 (in Chinese)[赵学童, 李建英, 贾然, 李盛涛2013物理学报62 077701]

    [28]

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 153103 (in Chinese)[赵学童, 李建英, 李欢, 李盛涛2012物理学报61 153103]

    [29]

    Addison W E 1953 Structural Principles in Inorganic Compounds (New York:Wiley) p57

    [30]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [31]

    Janotti A, van de WAlle C G 2007 Phys. Rev. B 76 165202

    [32]

    Janotti A, van de Walle G G 2005 Appl. Phys. Lett. 87 122

    [33]

    Eda K, Iga A, Matsuoka M 1979 Jpn. J. Appl. Phys. 18 997

    [34]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678

    [35]

    Kohan A F, Ceder G, Morgan D, van de Walle C G 2000 Phys. Rev. B 61 15019

    [36]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487

    [37]

    Levinson L M, Phillipp H R 1974 Appl. Phys. Lett. 24 75

    [38]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [39]

    Eda K 1989 IEEE Electr. Insul. Mag. 5 28

    [40]

    Selim A F, Gupta T K, Hower P L, Carlson W G 1980 J. Appl. Phys. 51 765

    [41]

    Levine J D 1971 J. Appl. Phys. 42 3991

    [42]

    Levinson L M, Philipp H R 1978 J. Appl. Phys. 49 6142

    [43]

    Cordaro J F, Shim Y, May J E 1986 J. Appl. Phys. 60 4186

    [44]

    Cheng P F, Li S T, Zhang L, Li J 2008 Appl. Phys. Lett. 93 012902

    [45]

    Greuter F, Blatter G 1990 Semicond. Sci. Technol. 5 111

    [46]

    Shim Y, Cordaro J F 1988 J. Appl. Phys. 64 3994

    [47]

    Shim Y, Cordaro J F 1988 J. Am. Ceram. Soc. 71 184

    [48]

    Wang Y P, Lee W I, Tseng T Y 1996 Appl. Phys. Lett. 69 1807

    [49]

    Lee W I, Young R L 1996 Appl. Phys. Lett. 69 526

    [50]

    Shohata N, Matsumura T, Ohno T 1980 Jpn. J. Appl. Phys. 19 1793

    [51]

    Simpson J C, Cordaro J F 1988 J. Appl. Phys. 63 1781

    [52]

    Leach C, Vernon-Parry K D, Ali N K 2010 J. Electroceram. 25 188

    [53]

    Rohatgi A, Pang S K, Gupta T K, Straub W D 1988 J. Appl. Phys. 63 5375

    [54]

    Ohbuchi Y, Yoshino J, Okamoto Y, Morimoto J 1999 J. Appl. Phys. 38 899

    [55]

    Fan J, Freer R 1994 J. Am. Ceram. Soc. 77 2663

    [56]

    Winston R A, Cordaro J F 1990 J. Appl. Phys. 68 6495

    [57]

    Han J, Mantas P Q, Senos A M R 2002 J. Eur. Ceram. Soc. 22 49

    [58]

    Levinson L M, Philipp H R 1986 J. Am. Ceram. Soc. Bull. 65 639

    [59]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing:Mechanical Industry Press) p151(in Chinese)[陈季丹, 刘子玉1982电介质物理学(北京:机械工业出版社)第151页]

    [60]

    Tsonos C, Kanapitsas A, Triantis D, Anastasiadis C, Stavrakas I, Pissis P, Neagu E 2011 Ceram. Int. 37 207

    [61]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [62]

    Andres-Verges M, West A R 1997 J. Electroceram. 1 125

    [63]

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701 (in Chinese)[李盛涛, 王辉, 林春江, 李建英2013物理学报62 087701]

    [64]

    Pathmanathan K, Stevens J R 1990 J. Appl. Phys. 68 5128

    [65]

    Davidson D W 1961 Can. J. Chem. 39 571

    [66]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [67]

    Gupta T K, Carlson W G, Hower P L 1981 J. Appl. Phys. 52 4104

    [68]

    Chen Z X, Lin G C, Fu G A 1998 Sci. China Ser. A:Math. Phys. Astron. 41 71

    [69]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [70]

    Al Abdullah K, Bui A, Loubiere A 1991 J. Appl. Phys. 69 4046

  • [1] Ma Meng-Yu, Yu Cui, He Ze-Zhao, Guo Jian-Chao, Liu Qing-Bin, Feng Zhi-Hong. Growth and surface structrue of hydrogen terminal diamond thin films. Acta Physica Sinica, 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [2] Liu Qing-Bin, Yu Cui, Guo Jian-Chao, Ma Meng-Yu, He Ze-Zhao, Zhou Chuang-Jie, Gao Xue-Dong, Yu Hao, Feng Zhi-Hong. Influence of polycrystalline diamond on silicon-based GaN material. Acta Physica Sinica, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] Ma Tian-Hui, Lei Zuo-Tao, Zhang Xiao-Meng, Fu Qiu-Yue, Bu Hebateer, Zhu Chong-Qiang, Yang Chun-Hui. Investigation of stability and migration mechanism of defects in ZnGeP2 crystals by density functional theory. Acta Physica Sinica, 2022, 71(22): 227101. doi: 10.7498/aps.71.20220610
    [4] Li Long, Wang Ming, Ni Hai-Bin, Shen Tian-Yi. Introduction of two-dimensional defects in inverse opal films by means of planar lithography and sol-gel co-assembly methods. Acta Physica Sinica, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [5] Zhao Xue-Tong, Li Jian-Ying, Jia Ran, Li Sheng-Tao. The Effect of DC degradation and heat-treatment on defects in ZnO varistor. Acta Physica Sinica, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [6] Wang Hui, Lin Jia-Jun, He Jin-Qiang, Liao Yong-Li, Li Sheng-Tao. The effects of precipitant on the defect structures and properties of ZnO varistor ceramics. Acta Physica Sinica, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [7] Zhang Li-Juan, Wang Li-Hai, Liu Jian-Dang, Li Qiang, Cheng Bin, Zhang Jie, An Ran, Zhao Ming-Lei, Ye Bang-Jiao. Positron annihilation spectrum study in non-ferroelectric piezoelectricity SrTiO3-Bi12TiO20 (ST-BT) composite ceramics. Acta Physica Sinica, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [8] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Dielectric spectra of ZnO varistor ceramics. Acta Physica Sinica, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [9] Xiang Jun, Guo Yin-Tao, Zhou Guang-Zhen, Chu Yan-Qiu. Preparation, structures and electrical properties of alkaline earth and transition metal-doped NdAlO3 conducting ceramics. Acta Physica Sinica, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [10] Zhao Xue-Tong, Li Jian-Ying, Li Xuan, Li Sheng-Tao. Characterization of defects and research on impulse aging in ZnO varistor ceramics. Acta Physica Sinica, 2012, 61(15): 153103. doi: 10.7498/aps.61.153103
    [11] Yuan Chang-Lai, Liu Xin-Yu, Huang Jing-Yue, Zhou Chang-Rong, Xu Ji-Wen. Electrical properties and impedance analysis of Bi0.5Ba0.5FeO3 ceramic. Acta Physica Sinica, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [12] Xiang Jun, Guo Yin-Tao, Chu Yan-Qiu, Zhou Guang-Zhen. Preparation and electrical properties of double-doped perovskitestructured conducting ceramics Sm0.9Sr0.1Al1-xCoxO3-δ. Acta Physica Sinica, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [13] Yang Hong-Dong, Yu Qi, Wang Xiang-Zhan, Li Jing-Chun, Ning Ning, Yang Mo-Hua. Strain relaxation mechanism of pseudomorphic SiGe using low-temperature technology. Acta Physica Sinica, 2010, 59(8): 5743-5748. doi: 10.7498/aps.59.5743
    [14] Yin Gui-Lai, Li Jian-Ying, Yao Guang, Cheng Peng-Fei, Li Sheng-Tao. Research on electronic process of impulse degradation of ZnO-based ceramics. Acta Physica Sinica, 2010, 59(9): 6345-6350. doi: 10.7498/aps.59.6345
    [15] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Grainboundary electronic structure of ZnO-Bi2O3 based varistor ceramics. Acta Physica Sinica, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [16] Li Sheng-Tao, Cheng Peng-Fei, Yang Yan, Zhang Le. A new method for investigating the conduction of ZnO-based varistor ceramics. Acta Physica Sinica, 2009, 58(4): 2543-2548. doi: 10.7498/aps.58.2543
    [17] Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying. Dielectric loss of ZnO varistor ceramics by variable temperature spectroscopy. Acta Physica Sinica, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [18] Li Sheng-Tao, Cheng Peng-Fei, Zhao-Lei, Li Jian-Ying. Study of intrinsic defects in ZnO varistor ceramics by dielectric spectroscopy. Acta Physica Sinica, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [19] Cheng Peng-Fei, Li Sheng-Tao, Jiao Xing-Liu. The conduction process and the equivalent barrier height in ZnO-Bi2O3 based varistor ceramics. Acta Physica Sinica, 2006, 55(8): 4253-4258. doi: 10.7498/aps.55.4253
    [20] CHU BAO-JIN, LI GUO-RONG, YIN QING-RUI, ZHANG WANG-ZHONG, CHEN DA-REN. INFLUENCE OF NONSTOICHIOMETRY AND DOPING ON ELECTRICAL PROPERTIES OF (Na1/2Bi1/2)0.92Ba0.08TiO3 CERAMICS. Acta Physica Sinica, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
Metrics
  • Abstract views:  6904
  • PDF Downloads:  396
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2016
  • Accepted Date:  01 November 2016
  • Published Online:  20 January 2017

/

返回文章
返回