Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of stability and migration mechanism of defects in ZnGeP2 crystals by density functional theory

Ma Tian-Hui Lei Zuo-Tao Zhang Xiao-Meng Fu Qiu-Yue Bu Hebateer Zhu Chong-Qiang Yang Chun-Hui

Citation:

Investigation of stability and migration mechanism of defects in ZnGeP2 crystals by density functional theory

Ma Tian-Hui, Lei Zuo-Tao, Zhang Xiao-Meng, Fu Qiu-Yue, Bu Hebateer, Zhu Chong-Qiang, Yang Chun-Hui
PDF
HTML
Get Citation
  • ZnGeP2 crystals are the frequency conversion materials with the excellent comprehensive performances in a range of 3–5 μm. However, the overlap of the absorption band and the pump wavelength range of optical parametric oscillator at 8–12 μm limits the application performance of the optical parametric oscillator and makes it impossible to achieve a far-infrared laser output. In this work, the formation energy and migration mechanism of six kinds of defects of ZnGeP2 crystal are discussed by density functional theory. The results show that two defective structures of $\rm{V_P}$and $\rm{V_{Ge}}$ are difficult to form, while four defective structures of $\rm V_{\rm Zn}^ -$, $\rm{Z{n_{Ge}}}$, $ {\rm Ge}_{\rm Zn}^ + $ and $\rm{ G{e_{\rm Zn}} + {V_{\rm Zn}}}$ are easy to create. When the number of Ge atoms are slightly more than that of Zn atoms in ZnGeP2 crystals, the vacancy defects $\rm V_{\rm Zn}^ -$ form more easily than antistructure defects $ {\rm Ge}_{\rm Zn}^ + $ at 10 K, 500 K and 600 K, but the antistructure defects $ {\rm Ge}_{\rm Zn}^ + $ are easier to form than the vacancy defects $ {\text{V}}_{\text{Zn}}^{-} $ at 273 K and 400 K. There is a negative correlation between the volume expansion rate and the defect formation energy of ZnGeP2 crystal. The larger the volume expansion rate, the lower the defect formation energy is. The differential charge density shows that the electron cloud density among the atoms is enhanced in the defective structures of GeZn and VZn+GeZn. The electron cloud density at the lattices of vacancy defects is enhanced when the vacancy defects (VZn and VGe) and antistructure defects (GeZn and ZnGe) form the joint defects. Comparing with the defect-free cells, the charge of Zn atoms increases significantly, that of Ge is significantly reduced, and that of P does not change in the antistructure defect ZnGe or GeZn. The absorption spectra of ZnGeP2 crystal at 10K show that there is the significant absorption in a wavelength range from 0.6 μm to 2.5 μm for the four defective structures: VGe, VZn, ZnGe and GeZn, while the absorption in this range is small for the defective structures VP and GeZn+VZn. The VZn has the lowest migration energy, while VGe has the highest. The difficulty for VP to migrate depends on the space resistance, while the difficulty for VGe and VZn to migrate depend on the inter-atomic distance. This may be related to the small radius and high proportion of P atoms and the large radius and low proportion of Ge and Zn atom in ZnGeP2 crystal.
      Corresponding author: Ma Tian-Hui, matianhui1972921@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52172002), the Science Foundation Project of Heilongjiang Province, China (Grant Nos. LH2019E079, YQ2020B002), Basic scientific research project of Heilongjiang Province(Grant No.2021GJ03), the Talent Training Project of the Central Government for the Reform and Development of Local Colleges and Universities (Grant No. 2021GSP13), and the Key Research and Development Plan of Heilongjiang province (Grant No. GZ20210140).
    [1]

    Kolesnikov A V, Vasilenko A P, Trukhanov E M, Lei Z T, Zhu C Q, Yang C H, Verozubova G A 2022 J. Cryst. Growth 580 126479Google Scholar

    [2]

    Cao Z H, Yang H, Sun S L, Liu Y H, Zhang M, Dai X J 2020 Opt. Mater. 110 110383Google Scholar

    [3]

    Lei Z T, Kolesnikov A, Vasilenko A, Zhu C Q, Verozubova G, Yang C H 2018 J. Appl. Cryst. 51 1043Google Scholar

    [4]

    Zinoviev M, Yudin N, Gribenyukov A, Podzyvalov S, Dyomin V, Polovtsev I, Suslyaev V, Zhuravlyova Y 2021 Opt. Mater. 111 110662Google Scholar

    [5]

    Shimony Y, Raz O, Kimmel G, Dariel M P 1999 Opt. Mater. 13 101Google Scholar

    [6]

    Rakowsky M H, Kuhn W K, Lauderdale W J, Halliburton L E, Edwards G J, Scripsick M P, Schunemann P G, Pollak T M, Ohmer M C, Hopkins F K 1994 Appl. Phys. Lett. 64 1615Google Scholar

    [7]

    Halliburton L E, Edwards G J, Scripsick M P, Rakowsky M H, Schunemann P G, Pollak T M 1995 Appl. Phys. Lett. 66 2670Google Scholar

    [8]

    Gehlhoff W, Azamat D, Hoffmann A 2003 Phys. Status Solidi B 235 151Google Scholar

    [9]

    Giles N C, Halliburton L E, Schunemann P G, Pollak T M 1995 Appl. Phys. Lett. 66 1758Google Scholar

    [10]

    Setzler S D, Giles N C, Halliburton L E, Schunmann P G, Pollak T M 1999 Appl. Phys. Lett. 74 1218Google Scholar

    [11]

    Gehlhoff W, Pereira R N, Azamat D, Hoffmann A, Dietz N 2001 Physica B 310 1015

    [12]

    Gehlhoff W, Azamat D, Hoffmann A, Dietz N 2003 J. Phys. Chem. Solids 64 1923Google Scholar

    [13]

    Jiang X S, Miao M S, Lambrecht W R L 2005 Phys. Rev. B 71 205212

    [14]

    Jiang X S, Miao M S, Lambrecht W R L 2006 Phys. Rev. B 73 193203

    [15]

    Jiang X S, Lambrecht W R L 2009 Solid State Commun. 149 685

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [18]

    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D 1993 Phys. Rev. B 47 10142Google Scholar

    [19]

    Yan Y F, Wei S H 2008 Phys. Stat. Sol. B 245 641

    [20]

    Wang C, Sun J, Gou H Y, Wang S P, Zhang J, Tao X T 2017 Phys. Chem. Chem. Phys. 19 9558Google Scholar

    [21]

    Setzler S D, Schunemann P G, Pollak T M, Ohmer M C, Goldstein J T, Hopkins F K, Stevens K T, Halliburton L E, Giles N C 1999 J. Appl. Phys 86 6677Google Scholar

    [22]

    Giles N C, Bai L H, Chirila M M, Garces N Y, Stevens K T, Schunemann P G, Setzler S D, Pollak T M 2003 J. Appl. Phys 93 8975Google Scholar

  • 图 1  缺陷形成能与温度的关系曲线

    Figure 1.  Dependent curves of defect formation energy and temperature.

    图 2  ZnGeP2缺陷晶胞体积变化率

    Figure 2.  Volume change rates of defective cells for ZnGeP2.

    图 3  ZnGeP2晶胞 (a) 273 K完美晶胞; (b) 273 K时VP晶胞; (c) 500 K完美晶胞; (d) 500 K时VP晶胞

    Figure 3.  Unit cells of ZnGeP2 (a) Perfect cell at 273 K; (b) cell containing VP at 273 K; (c) perfect cell at 500 K; (d) cell containing VP at 500 K.

    图 4  无缺陷晶胞和含缺陷晶胞(200)晶面的差分电荷密度分布图(红色圆圈为缺陷位置)

    Figure 4.  Differential charge density distribution of perfect cells and defective cells for (200) plane (red circles are defect positions) .

    图 5  ZnGeP2缺陷晶胞的吸收谱

    Figure 5.  Absorption spectra of defective cells for ZnGeP2.

    图 6  (010)面P原子标记图(采用2 × 1 × 1超胞体系)

    Figure 6.  Map of positions of P atoms for (010) plane (super cells of 2 × 1 × 1 are used).

    图 7  (010)面P1格点空位向P4, P6, P8迁移的过渡态 (a) P1-P4; (b) P1-P6; (c) P1-P8

    Figure 7.  Transition states for migrations from P1 vacancy lattice to P4, P6 and P8 lattices for (010) plane: (a) P1-P4; (b) P1-P6; (c) P1-P8.

    图 8  (100)面Ge原子标记图

    Figure 8.  Map of positions of Ge atoms for (100) plane.

    图 9  (100)面Ge1格点空位向Ge2, Ge3, Ge4, Ge7迁移的过渡态和中间体 (a) Ge1-Ge2过渡态; (b) Ge1-Ge3过渡态; (c) Ge1-Ge4中间体; (d) Ge1-Ge7中间体

    Figure 9.  Transition states and intermediate products for migrations from Ge1 vacancy lattice to Ge2, Ge3, Ge4 and Ge7 lattices for (100) plane: (a) Transition state of Ge1-Ge2; (b) transition state of Ge1-Ge3; (c) intermediate product of Ge1-Ge4; (d) intermediate product of Ge1-Ge7.

    图 10  (100)面Zn原子标记图

    Figure 10.  Map of positions of Zn atoms for (100) plane.

    图 11  (100)面Zn1格点空位向Zn2和Zn3迁移的过渡态 (a) Zn1-Zn2; (b) Zn1-Zn3

    Figure 11.  Transition states for migrations from Zn1 vacancy lattice to Zn2 and Zn3 lattices for (100) plane: (a) Zn1- Zn2; (b) Zn1- Zn3

    表 1  $ {\text{Z}}{{\text{n}}_{{\text{Ge}}}} $$ {\text{G}}{{\text{e}}_{{\text{Zn}}}} $的缺陷晶胞替换元素电荷和对应的键长

    Table 1.  Charge of substitution element and corresponding bond length of defective cells containing $ {\text{Z}}{{\text{n}}_{{\text{Ge}}}} $ and $ {\text{G}}{{\text{e}}_{{\text{Zn}}}} $.

    温度/K 元素电荷化学键键长/nm元素电荷 元素电荷化学键键长/nm元素电荷
    273无缺陷晶体Ge40.69Ge4-P62.35899P6–0.32ZnGeZn90.13Zn9-P82.48614P8–0.34
    Ge4-P42.35999P4–0.36Zn9-P62.50023P6–0.4
    Ge4-P82.34575P8–0.32Zn9-P122.49713P12–0.38
    Ge4-P32.28732P3–0.35Zn9-P112.42738P11–0.33
    Zn30.01Zn3-P42.31271P4–0.36GeZnGe10.37Ge1-P62.69564P6–0.36
    Zn3-P32.34784P3–0.35Ge1-P32.62636P3–0.32
    Zn3-P62.40425P6–0.32Ge1-P82.57614P8–0.32
    Zn3-P82.46926P8–0.32Ge1-P42.51162P4–0.35
    600无缺陷晶体Ge40.68Ge4-P62.23412P6–0.37ZnGeZn50.15Zn5-P82.3525P8–0.37
    Ge4-P42.34218P4–0.32Zn5-P62.65332P6–0.32
    Ge4-P82.40672P8–0.34Zn5-P122.6305P12–0.34
    Ge4-P32.34169P3–0.31Zn5-P112.54137P11–0.36
    Zn20Zn2-P52.48759P5–0.33GeZnGe10.37Ge1-P72.57682P7–0.33
    Zn2-P72.37797P7–0.37Ge1-P52.65679P5–0.34
    Zn2-P32.3425P3–0.31Ge1-P82.56753P8–0.33
    Zn2-P82.40251P8–0.34Ge1-P32.49967P3–0.29
    DownLoad: CSV

    表 2  (010)面P原子间距与迁移能

    Table 2.  P atomic spacing and migration energy for (010) plane.

    原子间距/(10–10 m)迁移能/eV原子间距/(10–10 m)迁移能
    /eV
    原子间距/(10–10 m)迁移能
    /eV
    P1-P23.7292.48595P1-P34.0242.54995P1-P43.7573.31980
    P2-P13.7292.45433P3-P14.0242.74953P4-P13.7573.24897
    P1-P53.8812.75197P1-P63.5542.28346P1-P73.7812.35649
    P5-P13.8812.67016P6-P13.5542.66777P7-P13.7812.27400
    P1-P83.6332.08976P1-P93.9472.68005
    P8-P13.6332.01885P9-P13.9472.87954
    DownLoad: CSV

    表 3  (100)面Ge原子间距与迁移能

    Table 3.  Ge atomic spacing and migration energy for (100) plane.

    原子间距/(10–10 m)迁移能
    /eV
    原子间距/(10–10 m)迁移能/eV原子间距/(10–10 m)迁移能
    /eV
    Ge1-Ge23.6682.41507Ge1-Ge36.6824.84944Ge1-Ge46.7205.76056
    Ge2-Ge13.6682.16555Ge3-Ge16.6824.77747Ge4-Ge16.7205.68664
    Ge1-Ge53.8572.85194Ge1-Ge63.9062.67506Ge1-Ge75.5055.15750
    Ge5-Ge13.8572.80361Ge6-Ge13.9062.62691Ge7-Ge15.5055.15696
    Ge1-Ge86.6354.50346
    Ge8-Ge16.6354.21664
    DownLoad: CSV

    表 4  (100)面Zn原子间距与迁移能

    Table 4.  Zn atomic spacing and migration energy for (100) plane.

    原子间距/(10–10 m)迁移能
    /eV
    原子间距/(10–10 m)迁移能
    /eV
    原子间距/(10–10 m)迁移能
    /eV
    Zn1-Zn23.8841.75494Zn1-Zn33.7302.03159Zn1-Zn43.9822.00985
    Zn2-Zn13.8841.81019Zn3-Zn13.7302.05914Zn4-Zn13.9822.04534
    Zn1-Zn55.5053.52642Zn1-Zn66.9065.04726
    Zn5-Zn15.5053.52635Zn6-Zn16.9065.12510
    DownLoad: CSV
  • [1]

    Kolesnikov A V, Vasilenko A P, Trukhanov E M, Lei Z T, Zhu C Q, Yang C H, Verozubova G A 2022 J. Cryst. Growth 580 126479Google Scholar

    [2]

    Cao Z H, Yang H, Sun S L, Liu Y H, Zhang M, Dai X J 2020 Opt. Mater. 110 110383Google Scholar

    [3]

    Lei Z T, Kolesnikov A, Vasilenko A, Zhu C Q, Verozubova G, Yang C H 2018 J. Appl. Cryst. 51 1043Google Scholar

    [4]

    Zinoviev M, Yudin N, Gribenyukov A, Podzyvalov S, Dyomin V, Polovtsev I, Suslyaev V, Zhuravlyova Y 2021 Opt. Mater. 111 110662Google Scholar

    [5]

    Shimony Y, Raz O, Kimmel G, Dariel M P 1999 Opt. Mater. 13 101Google Scholar

    [6]

    Rakowsky M H, Kuhn W K, Lauderdale W J, Halliburton L E, Edwards G J, Scripsick M P, Schunemann P G, Pollak T M, Ohmer M C, Hopkins F K 1994 Appl. Phys. Lett. 64 1615Google Scholar

    [7]

    Halliburton L E, Edwards G J, Scripsick M P, Rakowsky M H, Schunemann P G, Pollak T M 1995 Appl. Phys. Lett. 66 2670Google Scholar

    [8]

    Gehlhoff W, Azamat D, Hoffmann A 2003 Phys. Status Solidi B 235 151Google Scholar

    [9]

    Giles N C, Halliburton L E, Schunemann P G, Pollak T M 1995 Appl. Phys. Lett. 66 1758Google Scholar

    [10]

    Setzler S D, Giles N C, Halliburton L E, Schunmann P G, Pollak T M 1999 Appl. Phys. Lett. 74 1218Google Scholar

    [11]

    Gehlhoff W, Pereira R N, Azamat D, Hoffmann A, Dietz N 2001 Physica B 310 1015

    [12]

    Gehlhoff W, Azamat D, Hoffmann A, Dietz N 2003 J. Phys. Chem. Solids 64 1923Google Scholar

    [13]

    Jiang X S, Miao M S, Lambrecht W R L 2005 Phys. Rev. B 71 205212

    [14]

    Jiang X S, Miao M S, Lambrecht W R L 2006 Phys. Rev. B 73 193203

    [15]

    Jiang X S, Lambrecht W R L 2009 Solid State Commun. 149 685

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [17]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [18]

    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D 1993 Phys. Rev. B 47 10142Google Scholar

    [19]

    Yan Y F, Wei S H 2008 Phys. Stat. Sol. B 245 641

    [20]

    Wang C, Sun J, Gou H Y, Wang S P, Zhang J, Tao X T 2017 Phys. Chem. Chem. Phys. 19 9558Google Scholar

    [21]

    Setzler S D, Schunemann P G, Pollak T M, Ohmer M C, Goldstein J T, Hopkins F K, Stevens K T, Halliburton L E, Giles N C 1999 J. Appl. Phys 86 6677Google Scholar

    [22]

    Giles N C, Bai L H, Chirila M M, Garces N Y, Stevens K T, Schunemann P G, Setzler S D, Pollak T M 2003 J. Appl. Phys 93 8975Google Scholar

  • [1] Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi. Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Physica Sinica, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] Zhao Xiao-Qiang, Zhao Xue-Tong, Xu Chao, Li Wei-Wei, Ren Lu-Lu, Liao Rui-Jin, Li Jian-Ying. Recent research progress of relaxation performances of defects in ZnO-Bi2O3 varistor ceamics. Acta Physica Sinica, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [4] Liu Hai-Yong, Zhang Min, Lin Guo-Qiang, Han Ke-Chang, Zhang Lin. Structure and optical property of Cr-O films deposited by pulsed bias arc ion plating. Acta Physica Sinica, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [5] Jiang Yan, Liu Gui-Li. Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices. Acta Physica Sinica, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [6] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [8] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [9] Wang Hui, Lin Jia-Jun, He Jin-Qiang, Liao Yong-Li, Li Sheng-Tao. The effects of precipitant on the defect structures and properties of ZnO varistor ceramics. Acta Physica Sinica, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [10] Zhao Xue-Tong, Li Jian-Ying, Li Xuan, Li Sheng-Tao. Characterization of defects and research on impulse aging in ZnO varistor ceramics. Acta Physica Sinica, 2012, 61(15): 153103. doi: 10.7498/aps.61.153103
    [11] Zhang Rui-Shuo, Liu Yong, Teng Fan, Song Chen-Lu, Han Gao-Rong. Electronic and optical properties of anatase and rutile TiO2:Nb. Acta Physica Sinica, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [12] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [14] Wang Zhi-Yong, Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [15] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [16] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [17] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [18] Liu Ai-Yun, Meng Xiang-Jian, Xue Jian-Qiang, Sun Jing-Lan, Ma Jian-Hua, Wang Lin, Chu Jun-Hao. Optical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films prepared by chemical solution deposition. Acta Physica Sinica, 2006, 55(6): 3128-3131. doi: 10.7498/aps.55.3128
    [19] Shen Jian, Liu Shou-Hua, Shen Zi-Cai, Kong Wei-Jin, Huang Jian-Bing, Shao Jian-Da, Fan Zheng-Xiu. Theoretical study of influence of substrate microdefects on optical properties of dielectric thin films. Acta Physica Sinica, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
    [20] Zhang Chun-Xiang, Lin Li-Bin, Tang Qiang, Luo Da-Ling. Study on 3D thermoluminescence spectra in sapphire:Mn. Acta Physica Sinica, 2004, 53(11): 3940-3944. doi: 10.7498/aps.53.3940
Metrics
  • Abstract views:  3682
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2022
  • Accepted Date:  07 July 2022
  • Available Online:  04 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回