-
In order to improve the performance of transmitted GaAs photoelectric cathode, the quantum efficiency curve of Chinese transmitted GaAs photoelectric cathode is compared with that of the product of American ITT company, showing that the integration sensitivity of Chinese transmitted photoelectric cathode is 2130 μA/lm, and the American ITT company’s reaches 2330 μA/lm. Through the matrix method to solve the three membranes, the theoretical reflectivity is obtained. Based on the uniform doping transmission GaAs photocathode quantum efficiency formula, by replacing the fixed value R with variable value
$ {R}_{{\mathrm{t}}{\mathrm{h}}{\mathrm{e}}} $ , adding the short wave constraint factor, and modifying the quantum efficiency formula, a modified uniform doping transmission GaAs photocathode quantum efficiency formula is obtained. Using the revised quantum efficiency, optical performance and integral sensitivity theory model, through fitting the quantum efficiency curve of American ITT company product, introducing the ITT cathode component performance parameters, comparing the performance parameters of Chinese product, the results show that the Chinese photocathode in the window layer, the thickness of the emission layer, electron diffusion length and rear interface composite rate has a certain gap with ITT’s. In order to shorten the gap between the two and optimize the cathode structure parameters, the transmission GaAs photocathode optical structure software is designed to further analyze the influence of the electron diffusion length and the emission layer thickness on the quantum efficiency of the photocathode. The results show that with an electron diffusion length of 7 μm and emission layer thickness of 1.5 μm, the transmitted GaAs photocathode sensitivity can be more than 2800 μA/lm. However, the large electron diffusion length has high requirements for cathode materials and preparation level. The reasons responsible for the performance gap between Chinese product and other country’s are that in China the growth process of cathode materials is not jet matureand the cathode preparation equipment is out of date . In this paper, we study the relationship between GaAs photocathode optical performance and photoemission performance, and further optimize the structural design of cathode components, which has certain guiding significance for improving the cathode quantum efficiency and the level of image intensifier.-
Keywords:
- GaAs photocathode /
- transmission-mode /
- optimum structure /
- optical performance /
- photoemission performance
[1] 李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249
Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249
[2] 张益军 2022 红外技术 44 778
Zhang Y J 2022 Infrared Technol. 44 778
[3] Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar
[4] 杜晓晴 2005 博士学位论文 (南京: 南京理工大学)
Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[5] 张益军 2012 博士学位论文 (南京: 南京理工大学)
Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[6] 邹继军 2007 博士学位论文 (南京: 南京理工大学)
Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[7] 赵静 2013 博士学位论文 (南京: 南京理工大学)
Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[8] 邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar
Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar
[9] 杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar
Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar
[10] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)
Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry
[11] 唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)
Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press
[12] 张嘎 2021 硕士学位论文 (南京: 南京理工大学)
Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology
[13] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar
Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar
[14] 石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar
Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar
[15] 赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar
Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar
[16] 郭向阳 2011 硕士学位论文 (南京: 南京理工大学)
Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology
[17] Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar
[18] Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888
[19] 冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar
Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar
[20] 冯琤 2018 博士学位论文 (南京: 南京理工大学)
Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
-
表 1 国内外透射式GaAs光电阴极光谱响应参数对比
Table 1. Comparison of response parameters of transmitted GaAs photocathode spectrum at home and abroad.
曲线 起始波长/nm 截止波长/nm 峰值波长/nm 量子效率峰值/% 积分灵敏度/(μA·lm–1) 国内 450 930 710 45 2130 ITT 440 920 660 43 2330 表 2 透射式光电阴极性能参数的对比
Table 2. Comparison of the performance parameters of the transmitted photocathode.
类型 表面逸出概率 电子扩散
长度/μm后界面复合
速率/(cm·s–1)发射层
厚度/μm窗口层
厚度/μm窗口层Al组分 阴极灵敏
度/(μA·lm–1)国内 0.52 2.5 100000 1.5 0.4 0.7 2130 ITT 0.52 3.5 10000 1.3 0.4 1.3 2330 -
[1] 李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249
Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249
[2] 张益军 2022 红外技术 44 778
Zhang Y J 2022 Infrared Technol. 44 778
[3] Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar
[4] 杜晓晴 2005 博士学位论文 (南京: 南京理工大学)
Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[5] 张益军 2012 博士学位论文 (南京: 南京理工大学)
Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[6] 邹继军 2007 博士学位论文 (南京: 南京理工大学)
Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[7] 赵静 2013 博士学位论文 (南京: 南京理工大学)
Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
[8] 邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar
Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar
[9] 杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar
Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar
[10] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)
Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry
[11] 唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)
Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press
[12] 张嘎 2021 硕士学位论文 (南京: 南京理工大学)
Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology
[13] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar
Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar
[14] 石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar
Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar
[15] 赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar
Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar
[16] 郭向阳 2011 硕士学位论文 (南京: 南京理工大学)
Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology
[17] Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar
[18] Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888
[19] 冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar
Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar
[20] 冯琤 2018 博士学位论文 (南京: 南京理工大学)
Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology
Catalog
Metrics
- Abstract views: 2443
- PDF Downloads: 84
- Cited By: 0