Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement and structure optimization of transmission-mode GaAs photocathode performance

Lü Xing Fu Rong-Guo Chang Ben-Kang Guo Xin Wang Zhi

Citation:

Improvement and structure optimization of transmission-mode GaAs photocathode performance

Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi
PDF
HTML
Get Citation
  • In order to improve the performance of transmitted GaAs photoelectric cathode, the quantum efficiency curve of Chinese transmitted GaAs photoelectric cathode is compared with that of the product of American ITT company, showing that the integration sensitivity of Chinese transmitted photoelectric cathode is 2130 μA/lm, and the American ITT company’s reaches 2330 μA/lm. Through the matrix method to solve the three membranes, the theoretical reflectivity is obtained. Based on the uniform doping transmission GaAs photocathode quantum efficiency formula, by replacing the fixed value R with variable value $ {R}_{{\mathrm{t}}{\mathrm{h}}{\mathrm{e}}} $, adding the short wave constraint factor, and modifying the quantum efficiency formula, a modified uniform doping transmission GaAs photocathode quantum efficiency formula is obtained. Using the revised quantum efficiency, optical performance and integral sensitivity theory model, through fitting the quantum efficiency curve of American ITT company product, introducing the ITT cathode component performance parameters, comparing the performance parameters of Chinese product, the results show that the Chinese photocathode in the window layer, the thickness of the emission layer, electron diffusion length and rear interface composite rate has a certain gap with ITT’s. In order to shorten the gap between the two and optimize the cathode structure parameters, the transmission GaAs photocathode optical structure software is designed to further analyze the influence of the electron diffusion length and the emission layer thickness on the quantum efficiency of the photocathode. The results show that with an electron diffusion length of 7 μm and emission layer thickness of 1.5 μm, the transmitted GaAs photocathode sensitivity can be more than 2800 μA/lm. However, the large electron diffusion length has high requirements for cathode materials and preparation level. The reasons responsible for the performance gap between Chinese product and other country’s are that in China the growth process of cathode materials is not jet matureand the cathode preparation equipment is out of date . In this paper, we study the relationship between GaAs photocathode optical performance and photoemission performance, and further optimize the structural design of cathode components, which has certain guiding significance for improving the cathode quantum efficiency and the level of image intensifier.
      Corresponding author: Fu Rong-Guo, frguo@njust.edu.cn
    [1]

    李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249

    Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249

    [2]

    张益军 2022 红外技术 44 778

    Zhang Y J 2022 Infrared Technol. 44 778

    [3]

    Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar

    [4]

    杜晓晴 2005 博士学位论文 (南京: 南京理工大学)

    Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [5]

    张益军 2012 博士学位论文 (南京: 南京理工大学)

    Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [6]

    邹继军 2007 博士学位论文 (南京: 南京理工大学)

    Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    赵静 2013 博士学位论文 (南京: 南京理工大学)

    Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [8]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [9]

    杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar

    Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar

    [10]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry

    [11]

    唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)

    Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press

    [12]

    张嘎 2021 硕士学位论文 (南京: 南京理工大学)

    Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [13]

    赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar

    [14]

    石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar

    Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar

    [15]

    赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar

    [16]

    郭向阳 2011 硕士学位论文 (南京: 南京理工大学)

    Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [17]

    Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar

    [18]

    Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888

    [19]

    冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar

    Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar

    [20]

    冯琤 2018 博士学位论文 (南京: 南京理工大学)

    Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

  • 图 1  求解三层膜的矩阵法

    Figure 1.  Matrix method for solving three film.

    图 2  $ {{\mathrm{G}}{\mathrm{a}}}_{1-x}{{\mathrm{A}}{\mathrm{l}}}_{x}{\mathrm{A}}{\mathrm{s}} $光学常数随Al组分的变化[10]

    Figure 2.  Variation of the ${{\mathrm{G}}{\mathrm{a}}}_{1-x}{{\mathrm{A}}{\mathrm{l}}}_{x}{\mathrm{A}}{\mathrm{s}} $ optical constant with the Al component[10].

    图 3  量子效率随Al组分的变化

    Figure 3.  Variation of the quantum efficiency with the Al components.

    图 4  GaAs层掺杂浓度对材料吸收系数的影响

    Figure 4.  Effect of GaAs-layer doping concentration on the absorption coefficient of materials.

    图 5  量子效率随掺杂浓度的变化

    Figure 5.  Variation of quantum efficiency with the doping concentration.

    图 6  国产与ITT光电阴极量子效率对比[14,15]

    Figure 6.  Comparison of domestic and ITT photoelectric cathode quantum efficiency [14,15].

    图 7  透射式阴极理论灵敏度随Te的变化

    Figure 7.  Variation of the sensitivity of the transmission cathode theory with Te.

    图 8  透射式阴极理论灵敏度随Ld的变化

    Figure 8.  Variation of the theoretical sensitivity of the transmission cathode with Ld.

    图 9  透射式阴极理论量子效率随Te的变化

    Figure 9.  Variation of quantum efficiency of transmission cathode theory with Te.

    图 10  透射式阴极理论量子效率随Ld的变化

    Figure 10.  Variation of quantum efficiency of transmission cathode theory with Ld.

    表 1  国内外透射式GaAs光电阴极光谱响应参数对比

    Table 1.  Comparison of response parameters of transmitted GaAs photocathode spectrum at home and abroad.

    曲线起始波长/nm截止波长/nm峰值波长/nm量子效率峰值/%积分灵敏度/(μA·lm–1)
    国内450930710452130
    ITT440920660432330
    DownLoad: CSV

    表 2  透射式光电阴极性能参数的对比

    Table 2.  Comparison of the performance parameters of the transmitted photocathode.

    类型表面逸出概率电子扩散
    长度/μm
    后界面复合
    速率/(cm·s–1)
    发射层
    厚度/μm
    窗口层
    厚度/μm
    窗口层Al组分阴极灵敏
    度/(μA·lm–1)
    国内0.522.51000001.50.40.72130
    ITT0.523.5100001.30.41.32330
    DownLoad: CSV
  • [1]

    李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249

    Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249

    [2]

    张益军 2022 红外技术 44 778

    Zhang Y J 2022 Infrared Technol. 44 778

    [3]

    Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar

    [4]

    杜晓晴 2005 博士学位论文 (南京: 南京理工大学)

    Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [5]

    张益军 2012 博士学位论文 (南京: 南京理工大学)

    Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [6]

    邹继军 2007 博士学位论文 (南京: 南京理工大学)

    Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    赵静 2013 博士学位论文 (南京: 南京理工大学)

    Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [8]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [9]

    杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar

    Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar

    [10]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry

    [11]

    唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)

    Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press

    [12]

    张嘎 2021 硕士学位论文 (南京: 南京理工大学)

    Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [13]

    赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar

    [14]

    石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar

    Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar

    [15]

    赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar

    [16]

    郭向阳 2011 硕士学位论文 (南京: 南京理工大学)

    Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [17]

    Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar

    [18]

    Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888

    [19]

    冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar

    Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar

    [20]

    冯琤 2018 博士学位论文 (南京: 南京理工大学)

    Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

  • [1] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [2] Gong Ling-Yun, Zhang Ping, Chen qian, Lou Zhi-Hao, Xu Jie, Gao Feng. First principles study of structure and property of Nb5+-doped SrTiO3. Acta Physica Sinica, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] Shen Jie, Wei Bin, Zhou Jing, Shen Shirley Zhiqi, Xue Guang-Jie, Liu Han-Xing, Chen Wen. First-principle study of electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3. Acta Physica Sinica, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [4] Liu Hai-Yong, Zhang Min, Lin Guo-Qiang, Han Ke-Chang, Zhang Lin. Structure and optical property of Cr-O films deposited by pulsed bias arc ion plating. Acta Physica Sinica, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [5] Jiang Yan, Liu Gui-Li. Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices. Acta Physica Sinica, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [6] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [7] Jia Xiao-Qin, He Zhi-Bing, Niu Zhon-Cai, He Xiao-Shan, Wei Jian-Jun, Li Rui, Du Kai. Influnce of heat treatment on the structure and optical properties of glow discharge polymer films. Acta Physica Sinica, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] Zhang Rui-Shuo, Liu Yong, Teng Fan, Song Chen-Lu, Han Gao-Rong. Electronic and optical properties of anatase and rutile TiO2:Nb. Acta Physica Sinica, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [9] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [10] Zhao Jing, Chang Ben-Kang, Zhang Yi-Jun, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Comparison between transmission-mode extended blue GaAs photocathodes in optical structure. Acta Physica Sinica, 2012, 61(3): 037803. doi: 10.7498/aps.61.037803
    [11] Niu Jun, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan. Adsorption efficiency of cesium in activation process for GaAs photocathode. Acta Physica Sinica, 2011, 60(4): 044209. doi: 10.7498/aps.60.044209
    [12] Du Xiao-Qing, Wang Xiao-Hui, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Zhang Yi-Jun, Qiao Jian-Liang. Study of spectral response for transmission-modeNEA GaN photocathodes. Acta Physica Sinica, 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [13] Zhao Jing, Zhang Yi-Jun, Chang Ben-Kang, Xiong Ya-Juan, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu. Research on quantum efficient fitting and structure of high performance transmission-mode GaAs photocathode. Acta Physica Sinica, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [14] Wu Xue-Wei, Wu Da-Jian, Liu Xiao-Jun. Effects of B(N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [15] Zhang Li-Juan, Hu Hui-Fang, Wang Zhi-Yong, Wei Yan, Jia Jin-Feng. Study on the electronic structure and optical properties of B-doped single-walled carbon nanotubes for formaldehyde adsorption. Acta Physica Sinica, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [16] Yang Zhi, Zou Ji-Jun, Chang Ben-Kang. Research on the optimal thickness of transmission-mode exponential-doping GaAs photocathode. Acta Physica Sinica, 2010, 59(6): 4290-4295. doi: 10.7498/aps.59.4290
    [17] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [18] Gu Jian-Feng, Fu Wei-Jia, Liu Ming, Liu Zhi-Wen, Ma Chun-Yu, Zhang Qing-Yu. Highly c-axis textured ZnO thin films grown by electrochemical deposition and their optical properties. Acta Physica Sinica, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [20] Shen Jian, Liu Shou-Hua, Shen Zi-Cai, Kong Wei-Jin, Huang Jian-Bing, Shao Jian-Da, Fan Zheng-Xiu. Theoretical study of influence of substrate microdefects on optical properties of dielectric thin films. Acta Physica Sinica, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
Metrics
  • Abstract views:  2220
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2023
  • Accepted Date:  12 October 2023
  • Available Online:  24 October 2023
  • Published Online:  05 February 2024

/

返回文章
返回