Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure optimization of carbon nanotube ionization sensor based on fluid model

Wu Jian Han Wen Cheng Zhen-Zhen Yang Bin Sun Li-Li Wang Di Zhu Cheng-Peng Zhang Yong Geng Ming-Xin Jing Yan

Citation:

Structure optimization of carbon nanotube ionization sensor based on fluid model

Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan
PDF
HTML
Get Citation
  • Compared with the traditional ionization sensor, triple electrode ionization gas sensor based on carbon nanotubes features excellent performances of small size and low operation voltage, and plays an important role in developing smart grids and the ubiquitous Internet of Things. However, they exhibit the disadvantages of small collecting current and low sensitivity, and need to be optimized in structure. Based on the Townsend discharge mechanism and three governing equations of particle mass conservation, electron energy conservation and Poisson equations, a two-dimensional plasma discharge fluid simulation model of the sensor is established by using the COMSOL Multiphysics software. According to gas composition, component concentration, structure of the sensor and voltage applied to the electrodes, we determine the chemical reaction, reaction rate coefficient, field control equation, initial values and boundary conditions. In order to calculate the interior distribution of charged particles inside the boundary, the inter-electrode space region is meshed. Initial values of mesh are set, such as a dense mesh of nano-meter length around the electrode having micro-nano structure, and a rough mesh of micro-meter length in the other region of inter-electrode space. The initial values of time-step are set for each mesh grid, and the discharge model of each mesh grid is numerically solved by the finite volume method. The three linkage governing equations are discretized and calculated iteratively in time and space, and the mesh values and time-steps are adjusted to make the results converged. The electrostatic field distribution and the average collecting current density of the eight kinds of sensors are obtained in the background gas of nitrogen. The optimal sensor structure is obtained by comparing the electric field intensities and current densities under different structure parameters. The eight kinds of the sensors are prepared for experimentally verifying the optimization method. The optimal structure of the 7# sensor has the highest collecting current density in the eight kind structures, which is consistent with the simulation results, and proves the feasibility of the structure optimization method proposed in the paper. Based on the optimal structure, the sensors, respectively with the electrode spacings of 100 and 120 μm, are fabricated, and the response characteristics of NO/SO2 mixture gas are obtained. Compared with other technologies, the sensor with optimal structure exhibits 1-2 orders of sensitivity higher than the others. The optimized triple electrode ionization sensor based on carbon nanotubes exhibits many potential applications.
      Corresponding author: Zhang Yong, zhyong@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51577142, 61422061807), the National Key R&D Program of China (Grant Nos. 2017YFB0404102, 2017YFB1200902-09), and the Headquarters Management Technology Project of the State Grid Corporation, China (Grant No. 520900180008)
    [1]

    Gomes J B A, Rodrigues J J P C, Rabelo R A L, Tanwar S, Al-Muhtadi J, Kozlov S 2020 Trans. Emerging Tel. Tech. 4 e3967

    [2]

    Vijayalakshmi J, Puthilibhai G, Siddarth S R L 2019 Proceedings of the Third International Conference on I-SMAC Palladam, India, December 1–4, 2019 p778

    [3]

    Mubin M H, Chaudhary K, Haider Z, Dabagh S, Ali J 2018 J. Comput. Theor. Nanosci. 15 1059Google Scholar

    [4]

    Sun D J, Luo Y F, Debliquy M, Zhang C 2018 Beilstein J. Nanotechnol. 9 2832Google Scholar

    [5]

    Zhang J, Jiang G P, Cumberland T, Xu P, Wu Y L, Delaat S, Yu A P, Chen Z W A 2019 InfoMat 1 234Google Scholar

    [6]

    Wu M L, Shin J M, Hong Y, Jang D, Jin X S, Kwon H I, Lee J H 2018 Sens. Actuators, B 259 1058Google Scholar

    [7]

    Sayago I, Terrado E, Lafuente E, Horrillo M C, Maser W K, Benito A M, Navarro R, Urriolabeitia E P, Martinez M T, Gutierrez J 2005 Synth. Met. 148 15Google Scholar

    [8]

    Li C L, Su Y, Lv X Y, Xia H L, Wang Y J 2010 Sens. Actuators, B 149 427Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Pan Z G, Zhang Y, Cheng Z Z, Liang B D, Zhang J Y, Li X, Wang X H, Liu D X, Yang A J, Rong M Z, Chen X W 2017 Sens. Actuators, B 245 183Google Scholar

    [11]

    Pan Z G, Zhang Y, Cheng Z Z, Tong J M, Chen Q Y, Zhang J P, Zhang J X, Li X 2017 Sensors 17 473Google Scholar

    [12]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li X, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [13]

    Govardhan K, Narmada K, Grace N 2013 Proceedings of 2013 COMSOL Conference Bangalore, India, October 23–25, 2013 p182099

    [14]

    Wilde J, Lai Y Q 2003 Microelectron. Reliab 43 345Google Scholar

    [15]

    Atieh R K 2012 M. S. Thesis (Seri Iskandar: University Teknologi Petronas)

    [16]

    Chivu N, Kahrizi M 2012 IEEE International Conference on Industrial Technology (ICIT) Athens, Greece, Match 19–21, 2013 p178

    [17]

    Abdel-Salam M, Anis H, El-Morshedy A, Radwan R 2000 High-Voltage Engineering: Theory and Practice (New York: Dekker) pp11–120

    [18]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [19]

    Brunet H, RoccaSerra J 1985 J. Appl. Phys. 57 1574Google Scholar

    [20]

    Guerra V, Sá P A, Loureiro J 2001 J. Phys. D.: Appl. Phys. 34 1745Google Scholar

    [21]

    Zhao G B, Hu X D, Argyle M D, Radosz M 2004 Ind. Eng. Chem. Res. 43 5077Google Scholar

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [23]

    Alphasense. NO-B1 Nitric Oxide Sensor NO Gas Sensor. https://www.isweek.com/Uploads/20160129/56ab1f1083efc.pdf

    [24]

    City. NX1 CiTiceL Nitric Oxide Sensor NO Gas Sensor. https://www.citytech.com.cn/PDF-Datasheets/nx1.pdf.

    [25]

    City Technology. 3SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/3sf.pdf.

    [26]

    City Technology. 5SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/5sf.pdf.

    [27]

    DD Scientific. GS+7SO2 Sulphur Dioxide Sensor (SO2). http://www.ddscientific.com/uploads/5/7/1/3/57136893/gs_7so2_datasheet.pdf.

  • 图 1  碳纳米管三电极传感器示意图

    Figure 1.  Schematic diagram of the carbon nanotube triple electrode sensor.

    图 2  传感器测量电路示意图

    Figure 2.  Schematic diagram of the measuring circuit.

    图 3  传感器仿真模型 (a) 传感器的二维模型示意图; (b) 传感器的静电场二维轴对称仿真场域模型

    Figure 3.  Simulation model: (a) Longitudinal section diagram of the two-dimensional model; (b) two-dimensional axisymmetric field simulation model of the electrostatic field.

    图 4  模型添加的边界条件 (a) 阴极边界; (b) 引出极边界; (c) 收集极边界

    Figure 4.  Boundary conditions: (a) The cathode; (b) extracting electrode; (c) collecting electrode.

    图 5  传感器极间一半场域模型网格剖分图 (a) 极间一半场域剖分; (b) 单根碳管周边局部场域剖分

    Figure 5.  Grid mesh of sensor model in the half region of interelectrode: (a) Mesh in the half region of interelectrode; (b) mesh in the local region around carbon nanotube.

    图 6  传感器的纵向电场分布

    Figure 6.  Longitudinal electric field distribution of the sensor.

    图 7  4种不同收集极结构的传感器电极示意图 (a) 1#传感器; (b) 2#传感器; (c) 3#传感器; (d) 4#传感器

    Figure 7.  Schematic diagram of the electrodes with four different collecting structures: (a) 1# sensor; (b) 2# sensor; (c) 3# sensor; (d) 4# sensor.

    图 8  不同引出孔直径传感器静电场仿真 (a) 引出孔直径4 mm; (b) 引出孔直径3 mm; (c) 引出孔直径2 mm; (d) 引出孔直径1.2 mm; (e) 引出孔直径1 mm

    Figure 8.  Electrostatic field simulation of the sensors with different outlet diameters of (a) 4 mm, (b) 3 mm, (c) 2 mm, (d) 1.2 mm, and (e) 1 mm.

    图 9  3种不同引出极结构的传感器电极示意图 (a) 1#传感器; (b) 5#传感器; (c) 6#传感器

    Figure 9.  Schematic diagram of the electrodes with three different extracting electrode structures: (a) 1# sensor; (b) 5# sensor; (c) 6# sensor.

    图 10  3种不同阴极结构的传感器电极示意图 (a) 6#传感器; (b) 7#传感器; (c) 8#传感器

    Figure 10.  Schematic diagram of the electrodes with three different cathode structures: (a) 6# sensor; (b) 7# sensor; (c) 8# sensor.

    图 11  仿真与实验电流密度对比

    Figure 11.  Comparison of current densities obtained through simulation and experiment.

    图 12  氮气背景NO和SO2混合气体敏感特性曲线 (a) 不同SO2的体积分数(1 ppm = 10–6)下100 μm极间距NO传感器收集电流与NO的体积分数的关系曲线; (b) 不同NO的体积分数下120 μm极间距SO2传感器收集电流与SO2的体积分数的关系曲线

    Figure 12.  Sensitivity characteristic curves of the sensor array for measuring NO and SO2 mixture in nitrogen: (a) Collecting currents of the NO sensor with the electrode spacing of 100 μm versus volume fraction of NO under different volume fractions of SO2; (b) collecting currents of the SO2 sensor with the electrode spacing of 120 μm versus volume fraction of SO2 under different volume fractions of NO.

    表 1  仿真建模参数

    Table 1.  Parameters of the simulation model.

    d/μmUe/VUc/V极板厚度/μm收集极槽参数引出极孔半径/mm阴极孔半径/mm碳纳米管参数
    数值10010014506 mm × 8 mm,
    200 μm深
    32长: 5 μm, 尖端半径:
    10 nm, 间距: 200 nm
    DownLoad: CSV

    表 2  网格剖分尺寸

    Table 2.  Mesh size of the model.

    整体区域阴极碳纳米管边界阴极非碳纳米管边界引出极、收集极边界
    最大单元尺寸/μm400.52030
    最小单元尺寸/μm100.0012030
    最大单元生长率1.251.25
    曲率解析度0.250.2
    狭窄区域解析度11
    DownLoad: CSV

    表 3  气体电离流体仿真模型的区域反应

    Table 3.  Regional reactions of the fluid simulation model on gas ionization.

    类型序号反应式反应率系数k/(m3·s–1)参考文献
    电子碰撞R1e + N2 → e + N2f(Te)[18]
    R2e + N2 → e + $ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $f(Te)[18]
    R3e + N2 → e + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $f(Te)[18]
    R4e + N2 → 2e +$ {\rm{N}}_{2}^{+} $f(Te)[18]
    R5e +$ {\rm{N}}_{4}^{+} $ → N2 + N24.73 × 10–11/(Te0.53)[18]
    R6e + N2 + $ {\rm{N}}_{2}^{+} $ → 2N23.12 × 10–35/Te1.5[18]
    R7e + e +$ {\rm{N}}_{2}^{+} $ → N21 × 10–31 × (Tg/Te)4.5[18]
    重粒子反应R8$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + N2 +$ {\rm{N}}_{2}^{+} $5.0 × 10–17[19]
    R9$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + N2 +$ {\rm{N}}_{2}^{+} $2.0 × 10–16[19]
    R10$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + $ {\rm{N}}_{4}^{+} $5.0 × 10–17[20]
    R11$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ + $ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $ → e + $ {\rm{N}}_{4}^{+} $2.0 × 10–16[20]
    R12$ {\rm{N}}_{2}\left({\rm{A}}^{3}\Sigma _{\rm{u}}^{+}\right) $ + N2 → N2 + N23.0 × 10–22[19]
    R13$ {\rm{N}}_{2}\left({\rm{a'}}^{1}\Sigma _{\rm{u}}^{-}\right) $+ N2 → N2 + N22.3 × 10–19[21]
    R14$ {\rm{N}}_{2}^{+} $ + N2 + N2 → $ {\rm{N}}_{4}^{+} $ + N21 × 10–41 × (300/Te)[18]
    R15$ {\rm{N}}_{4}^{+} $ + N2 → $ {\rm{N}}_{2}^{+} $ + N2 + N22.1 × 10–16exp(Tg/121)[18]
    DownLoad: CSV

    表 4  电极表面化学反应

    Table 4.  Chemical reactions on the electrode surface

    序号表面化学反应碳纳米管
    材料边界
    其他电
    极边界
    γeεr/eVγeεr/eV
    1${\rm{N} }_{2}\big({\rm{A} }^{3}\Sigma _{\rm{u} }^{+}\big)$ + 电极 → N20000
    2${\rm{N} }_{2}\big({\rm{a'} }^{1}\Sigma _{\rm{u} }^{-}\big)$ + 电极 → N20000
    3$ {\rm{N}}_{2}^{+} $ + 电极 → N20.2200
    4$ {\rm{N}}_{4}^{+} $+ 电极 → 2N20.2200
    DownLoad: CSV

    表 5  4种不同收集极结构的传感器的仿真放电参数

    Table 5.  Simulation discharge parameters of the four sensors with different collecting electrode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子
    浓度/m–3
    平均收集电流
    密度/(A·m–2)
    14.88 × 10119.30 × 10136.50 × 10-4
    23.32 × 10114.85 × 1013 4.09 × 10-4
    34.36 × 10116.10 × 10134.67 × 10-4
    44.61 × 10116.29 × 1013 4.96 × 10-4
    DownLoad: CSV

    表 6  3种不同引出极结构的传感器的仿真放电参数

    Table 6.  Simulation discharge parameters of the three sensors with different extracting electrode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子
    浓度/m–3
    平均收集电流
    密度/(A·m–2)
    14.88 × 10119.30 × 10136.50 × 10–4
    56.87 × 10111.12 × 10147.77 × 10–4
    62.15 × 10123.25 × 10149.99 × 10–4
    DownLoad: CSV

    表 7  3种不同阴极结构的传感器的仿真放电参数

    Table 7.  Simulation discharge parameters of the sensors with three different cathode structures.

    传感器
    型号
    电子浓
    度/m–3
    正离子浓
    度/m–3
    平均收集电流
    密度/(A·m–2)
    62.15 × 10123.25 × 10149.99 × 10–4
    72.28 × 10123.67 × 10141.00 × 10–3
    81.99 × 10123.09 × 10149.93 × 10–4
    DownLoad: CSV

    表 8  传感器阵列测量NO和SO2两组分混合气体的实验条件

    Table 8.  Experimental conditions of NO and SO2 mixtures detection with a sensor array.

    实验条件NO传感器SO2传感器
    极间距/μm100120
    阴极电压/V0
    引出极电压/V150
    收集极电压/V10
    NO体积分数0—1114 × 10–6
    SO2体积分数0—735 × 10–6
    DownLoad: CSV

    表 9  碳纳米管三电极传感器与现有NO, SO2传感器的性能对比

    Table 9.  Performance comparison of carbon nanotube based triple electrode sensors with the existing NO and SO2 sensors.

    传感器型号量程/10–6灵敏度SN/106
    三电极碳纳米管NO传感器0—1114–1.6 × 10–2
    三电极碳纳米管SO2传感器0—735–1.0 × 10–2
    NO-B1 NO传感器[23]0—2504.0 × 10–3
    NX1 CiTiceL NO传感器[24]0—50002.0 × 10–4
    3SF CiTiceL SO2传感器[25]0—20005.0 × 10–3
    5SF CiTiceL SO2传感器[26]0—20005.0 × 10–3
    GS+7SO2 SO2传感器[27]0—10001.0 × 10–3
    DownLoad: CSV
  • [1]

    Gomes J B A, Rodrigues J J P C, Rabelo R A L, Tanwar S, Al-Muhtadi J, Kozlov S 2020 Trans. Emerging Tel. Tech. 4 e3967

    [2]

    Vijayalakshmi J, Puthilibhai G, Siddarth S R L 2019 Proceedings of the Third International Conference on I-SMAC Palladam, India, December 1–4, 2019 p778

    [3]

    Mubin M H, Chaudhary K, Haider Z, Dabagh S, Ali J 2018 J. Comput. Theor. Nanosci. 15 1059Google Scholar

    [4]

    Sun D J, Luo Y F, Debliquy M, Zhang C 2018 Beilstein J. Nanotechnol. 9 2832Google Scholar

    [5]

    Zhang J, Jiang G P, Cumberland T, Xu P, Wu Y L, Delaat S, Yu A P, Chen Z W A 2019 InfoMat 1 234Google Scholar

    [6]

    Wu M L, Shin J M, Hong Y, Jang D, Jin X S, Kwon H I, Lee J H 2018 Sens. Actuators, B 259 1058Google Scholar

    [7]

    Sayago I, Terrado E, Lafuente E, Horrillo M C, Maser W K, Benito A M, Navarro R, Urriolabeitia E P, Martinez M T, Gutierrez J 2005 Synth. Met. 148 15Google Scholar

    [8]

    Li C L, Su Y, Lv X Y, Xia H L, Wang Y J 2010 Sens. Actuators, B 149 427Google Scholar

    [9]

    Zhang J Y, Zhang Y, Pan Z G, Yang S, Shi J H, Li S T, Min D M, Li X, Wang X H, Liu D X, Yang A J 2015 Appl. Phys. Lett. 107 093104Google Scholar

    [10]

    Pan Z G, Zhang Y, Cheng Z Z, Liang B D, Zhang J Y, Li X, Wang X H, Liu D X, Yang A J, Rong M Z, Chen X W 2017 Sens. Actuators, B 245 183Google Scholar

    [11]

    Pan Z G, Zhang Y, Cheng Z Z, Tong J M, Chen Q Y, Zhang J P, Zhang J X, Li X 2017 Sensors 17 473Google Scholar

    [12]

    Zhang Y, Li S T, Zhang J Y, Pan Z G, Min D M, Li X, Song X P, Liu J H 2013 Sci. Rep. 3 1267Google Scholar

    [13]

    Govardhan K, Narmada K, Grace N 2013 Proceedings of 2013 COMSOL Conference Bangalore, India, October 23–25, 2013 p182099

    [14]

    Wilde J, Lai Y Q 2003 Microelectron. Reliab 43 345Google Scholar

    [15]

    Atieh R K 2012 M. S. Thesis (Seri Iskandar: University Teknologi Petronas)

    [16]

    Chivu N, Kahrizi M 2012 IEEE International Conference on Industrial Technology (ICIT) Athens, Greece, Match 19–21, 2013 p178

    [17]

    Abdel-Salam M, Anis H, El-Morshedy A, Radwan R 2000 High-Voltage Engineering: Theory and Practice (New York: Dekker) pp11–120

    [18]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [19]

    Brunet H, RoccaSerra J 1985 J. Appl. Phys. 57 1574Google Scholar

    [20]

    Guerra V, Sá P A, Loureiro J 2001 J. Phys. D.: Appl. Phys. 34 1745Google Scholar

    [21]

    Zhao G B, Hu X D, Argyle M D, Radosz M 2004 Ind. Eng. Chem. Res. 43 5077Google Scholar

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [23]

    Alphasense. NO-B1 Nitric Oxide Sensor NO Gas Sensor. https://www.isweek.com/Uploads/20160129/56ab1f1083efc.pdf

    [24]

    City. NX1 CiTiceL Nitric Oxide Sensor NO Gas Sensor. https://www.citytech.com.cn/PDF-Datasheets/nx1.pdf.

    [25]

    City Technology. 3SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/3sf.pdf.

    [26]

    City Technology. 5SF CiTiceL Sulphur dioxide (SO2) Gas Sensor. http://www.citytech.com.cn/PDF-Datasheets/5sf.pdf.

    [27]

    DD Scientific. GS+7SO2 Sulphur Dioxide Sensor (SO2). http://www.ddscientific.com/uploads/5/7/1/3/57136893/gs_7so2_datasheet.pdf.

  • [1] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] Liu Zai-Hao, Liu Ying-Hua, Xu Bo-Ping, Yin Pei-Qi, Li Jing, Wang Yi-Shan, Zhao Wei, Duan Yi-Xiang, Tang Jie. Two-dimensional numerical simulation of pre-ionized direct-current glow discharge in atmospheric helium. Acta Physica Sinica, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [3] Chen Zi-Jun, Li Hui-Fang, Xie Zhen-Ming, Zhang Yong-Hang, Zheng Hao, Jiang Kai-Le, Zhang Bo, Zhang Jia-Ming, Wang Huai-Qian. Geometry and electronic structures of rare earth-doped boron-based clusters $ {\text{REB}}_n^ - $ (RE = La, Sc; n = 6, 8). Acta Physica Sinica, 2024, 73(19): 193601. doi: 10.7498/aps.73.20240962
    [4] Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi. Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Physica Sinica, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [5] Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Physica Sinica, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [6] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [7] Zhou Zi-Xin, Huang Yin-Bo, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Design and experiment of re-injection off-axis integrated cavity output spectroscopy technology in 2 μm band. Acta Physica Sinica, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [8] Yan De-Xian, Li Jiu-Sheng, Wang Yi. High sensitivity terahertz refractive index sensor based on sunflower-shaped circular photonic crystal. Acta Physica Sinica, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [9] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [10] Deng Hai-You, Jia Ya, Zhang Yang. Protein structure prediction. Acta Physica Sinica, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [11] Li Ke-Wu, Wang Zhi-Bin, Chen You-Hua, Yang Chang-Qing, Zhang Rui. High sensitive measurement of optical rotation based on photo-elastic modulation. Acta Physica Sinica, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [12] An Ping, Guo Hao, Chen Meng, Zhao Miao-Miao, Yang Jiang-Tao, Liu Jun, Xue Chen-Yang, Tang Jun. Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Acta Physica Sinica, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [13] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [14] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [15] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [16] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [17] Lou Shu-Qin, Wang Xin, Yin Guo-Lu, Han Bo-Lin. Curvature sensor based on side-leakage photonic crystal fiber with high sensitivity and broad linear measurement range. Acta Physica Sinica, 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [18] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [19] Liu Ting-Yu, Zhang Qi-Ren, Zhuang Song-Lin. The colour centre model related to lead vacancy in PbWO4 crystal. Acta Physica Sinica, 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [20] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
Metrics
  • Abstract views:  6702
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2020
  • Accepted Date:  11 December 2020
  • Available Online:  21 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回