Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates

Liu Xiao-Wei Zhang Ke-Ye

Citation:

Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates

Liu Xiao-Wei, Zhang Ke-Ye
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The realization of Bose-Einstein condensation in dilute atomic gases opens an exciting way to quantum mechanics and begins a new area of quantum simulation. As a macroscopic quantum object and a many-body bosonic system, the Bose-Einstein condensates can show numerous exotic quantum effects and have naturally attracted great attention. One of the simplest quantum many-body systems to be realized experimentally and studied theoretically is ultra-cold atoms in a double-well potential. This system can exhibit a great variety of quantum interference phenomena such as tunneling oscillation, self-trapping and the entanglement of macroscopic superpositions. Specifically, the double-well potentials built by optical or magnetic fields are easy to change and the many-body interaction between ultra-cold atoms can be changed by the method of Feshbach resonance, enabling the precise quantum control of the double-well dynamics of the condensates. In the present work, we study the dynamics of a condensate in a trapping potential consisting of an unalterable double-well trap and an additional moving optical lattice. If the lattice space is much smaller than the size of the double-well trap, the system can be simplified into a double-well trapped condensate with a tunable effective mass. Using the mean-field factorization assumption, together with a two-mode approximation, we obtain the analytic expressions for the dependence of the tunneling rate and the self-collision strength on the effective mass. The tunneling rate decays and the collision strength grows up with the increase of the effective mass. As a consequence of their different changes, we conclude that the adjustment of the effective mass of the ultra-cold atoms, rather than the changing of the trap barrier or adjusting of the atomic scattering length, is an alternative approach to controlling the double-well dynamics of the condensate. Via numerical simulations of the mean-field dynamical equations with some realistic parameters, we show that a transition between the quantum coherent tunneling and the self-trapping behaviors is experimentally realizable with the mass-control approach. Specifically, we show that the approach is still valid for the case of negative mass. Moreover, we find that the negative-mass case can be used even to stimulate the double-well dynamics of the condensate with a negative atomic scattering length.
      Corresponding author: Zhang Ke-Ye, kyzhang@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574086, 91436211, 11234003), the National Key Research and Development Program of China (Grant No. 2016YFA0302001), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 11654005), and the Shanghai Rising-Star Program, China (Grant No. 16QA1401600).
    [1]

    Hinds E A, Boshier M G, Hughes I G 1998 Phys. Rev. Lett. 80 645

    [2]

    Thywissen J H, Olshanii M, Zabow G, Drndic M, Johnson K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [3]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmeison K, Phillips W D 2006 Phys. Rev. Lett. 97 170406

    [4]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [5]

    Giltner D M, McGowan R W, Lee S A 1995 Phys. Rev. Lett. 75 2638

    [6]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2406

    [7]

    Stringari S 2001 Phys. Rev. Lett. 86 4725

    [8]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B:At. Mol. Opt. Phys. 35 3095

    [9]

    Choi D, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [10]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [11]

    Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [12]

    Xu Z J, Cheng C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese)[徐志君, 程成, 杨欢耸, 武强, 熊宏伟2004物理学报53 2835]

    [13]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [14]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [15]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2001 Nature 415 39

    [16]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [17]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [18]

    Smerzi A, Fantoni S, Giovanazz S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [19]

    Pu H, Baksmaty L O, Zhang W, Bigelow N P, Meystre P 2003 Phys. Rev. A 67 043605

    [20]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [21]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese)[何章明, 王登龙, 丁建文, 颜晓红2012物理学报61 230508]

    [22]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)[何章明, 王登龙2007物理学报56 3088]

    [23]

    Mosk A P 2005 Phys. Rev. Lett. 95 040403

    [24]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [25]

    Ananikian D, Bergeman T 2006 Phys. Rev. A 73 013604

    [26]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhardt A E 2004 Phys. Rev. Lett. 92 050405

    [27]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [28]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [29]

    Michael A, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [30]

    Spagnolli G, Semeghini G, Masi L, Ferioli G, Trenkwalder A, Coop S, Landini M, Pezzé L, Modugno G, Inguscio M, Smerzi A, Fattori M 2017 arxiv 1703. 02370[quant-ph]

    [31]

    Gati R, Oberthaler M K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R61

    [32]

    Jack M W, Collett M J, Walls D F 1996 Phys. Rev. A 54 R4625

  • [1]

    Hinds E A, Boshier M G, Hughes I G 1998 Phys. Rev. Lett. 80 645

    [2]

    Thywissen J H, Olshanii M, Zabow G, Drndic M, Johnson K S, Westervelt R M, Prentiss M 1999 Eur. Phys. J. D 7 361

    [3]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmeison K, Phillips W D 2006 Phys. Rev. Lett. 97 170406

    [4]

    Dutton Z, Ruostekoski J 2004 Phys. Rev. Lett. 93 193602

    [5]

    Giltner D M, McGowan R W, Lee S A 1995 Phys. Rev. Lett. 75 2638

    [6]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2406

    [7]

    Stringari S 2001 Phys. Rev. Lett. 86 4725

    [8]

    Denschlag J H, Simsarian J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002 J. Phys. B:At. Mol. Opt. Phys. 35 3095

    [9]

    Choi D, Niu Q 1999 Phys. Rev. Lett. 82 2022

    [10]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [11]

    Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L, Tosi M P 2001 Phys. Rev. Lett. 86 4447

    [12]

    Xu Z J, Cheng C, Yang H S, Wu Q, Xiong H W 2004 Acta Phys. Sin. 53 2835 (in Chinese)[徐志君, 程成, 杨欢耸, 武强, 熊宏伟2004物理学报53 2835]

    [13]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [14]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108

    [15]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2001 Nature 415 39

    [16]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [17]

    Liu W M, Fan W B, Zheng W M, Liang J Q, Chui S T 2002 Phys. Rev. Lett. 88 170408

    [18]

    Smerzi A, Fantoni S, Giovanazz S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950

    [19]

    Pu H, Baksmaty L O, Zhang W, Bigelow N P, Meystre P 2003 Phys. Rev. A 67 043605

    [20]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [21]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese)[何章明, 王登龙, 丁建文, 颜晓红2012物理学报61 230508]

    [22]

    He Z M, Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)[何章明, 王登龙2007物理学报56 3088]

    [23]

    Mosk A P 2005 Phys. Rev. Lett. 95 040403

    [24]

    Zhang K Y, Meystre P, Zhang W P 2013 Phys. Rev. A 88 043632

    [25]

    Ananikian D, Bergeman T 2006 Phys. Rev. A 73 013604

    [26]

    Shin Y, Saba M, Pasquini T A, Ketterle W, Pritchard D E, Leanhardt A E 2004 Phys. Rev. Lett. 92 050405

    [27]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463

    [28]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [29]

    Michael A, Gati R, Fölling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402

    [30]

    Spagnolli G, Semeghini G, Masi L, Ferioli G, Trenkwalder A, Coop S, Landini M, Pezzé L, Modugno G, Inguscio M, Smerzi A, Fattori M 2017 arxiv 1703. 02370[quant-ph]

    [31]

    Gati R, Oberthaler M K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 R61

    [32]

    Jack M W, Collett M J, Walls D F 1996 Phys. Rev. A 54 R4625

  • [1] Ying Yao-Jun, Li Hai-Bin. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [2] Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [3] He Zhang-Ming, Zhang Zhi-Qiang. Controlling interactions between bright solitons in Bose-Einstein condensate. Acta Physica Sinica, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [4] Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [5] Zhang Xiao-Fei, Zhang Pei, Chen Guang-Ping, Dong Biao, Tan Ren-Bing, Zhang Shou-Gang. Ground state of a two-component dipolar Bose-Einstein condensate confined in a coupled annular potential. Acta Physica Sinica, 2015, 64(6): 060302. doi: 10.7498/aps.64.060302
    [6] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [7] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [8] Huang Fang, Li Hai-Bin. Adiabatic tunneling of Bose-Einstein condensatein double-well potential. Acta Physica Sinica, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [9] Wang Zhi-Xia, Zhang Xi-He, Shen Ke. Anti-control of chaos in Bose-Einstein condensate. Acta Physica Sinica, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [10] Wang Hai-Lei, Yang Shi-Ping. Switch effect of Bose-Einstein condensates in a triple-well potential. Acta Physica Sinica, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [11] Fang Yong-Cui, Yang Zhi-An, Yang Li-Yun. Phase transition and entanglement entropy of Bose-Einstein condensates in double-well trap under periodic modulation. Acta Physica Sinica, 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [12] Zang Xiao-Fei, Li Ju-Ping, Tan Lei. Nonlinear dynamical properties of susceptibility of a spinor Bose-Einstein condensate with dipole-dipole interaction in a double-well potential. Acta Physica Sinica, 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [13] Liu Ze-Zhuan, Yang Zhi-An. Influence of noise on self-trapping of Bose-Einstein condensates in double-well trap. Acta Physica Sinica, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [14] Lu Guang-Cheng, Li Zeng-Hua, Zuo Wei, Luo Pei-Yan. Single nucleon potential and effective mass with ground state correlations in hot nuclear matter. Acta Physica Sinica, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [15] Yu Xue-Cai, Ye Yu-Tang, Cheng Lin. Criterion for validity of potential and limiting atom number in a potential well for Bose-Einstein condensation gas. Acta Physica Sinica, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [16] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [17] Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [18] Wang Guan-Fang, Fu Li-Bin, Zhao Hong, Liu Jie. Self-trapping and its periodic modulation of Bose-Einstein condensates in double-well trap. Acta Physica Sinica, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [19] Cui Hai-Tao, Wang Lin-Cheng, Yi Xue-Xi. Low-dimensional Bose-Einstein condensation in finite-number trapped atoms. Acta Physica Sinica, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [20] YAN KE-ZHU, TAN WEI-HAN. BOSE-EINSTEIN CONDERSATION OF NEUTRAL ATOMS WITH ATTRACTIVE INTERACTION IN A HAR MONIC TRAP. Acta Physica Sinica, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
Metrics
  • Abstract views:  6030
  • PDF Downloads:  316
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2017
  • Accepted Date:  12 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回