Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air

Dai Yu-Jia Song Xiao-Wei Gao Xun Wang Xing-Sheng Lin Jing-Quan

Citation:

Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air

Dai Yu-Jia, Song Xiao-Wei, Gao Xun, Wang Xing-Sheng, Lin Jing-Quan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The radio-frequency (RF) emissions in a range from 30 MHz to 800 MHz from the plasma, which is produced by the nanosecond laser (532 nm, 8 ns) induced breakdown of atmospheric air, are presented. A spectrum analyzer which can scan over a spectral range of 9 kHz-26.5 GHz is used to record the RF-range radiation intensities of the emission from the plasma. RF electromagnetic radiations from the laser induced breakdown of atmospheric air are obtained for different input laser energies. A half-wave plate and a Glan prism are used to vary the input laser energy. Experimental results show that the intensities of RF radiation in a range of 30-200 MHz increase with the increase of laser energy, but the intensities of RF radiation in a 360-600 MHz frequency range decrease. To study the effect of input laser polarization on the RF radiation, we adopt the input lasers with vertical and horizontal polarization respectively. When the polarizations of the input laser and the antenna are the same, the RF radiation intensity is relatively high, and the frequency lines are relatively abundant. The changing relationship between the total power of RF radiation and the energy of the input laser is calculated and analyzed. It is observed that the total power of RF radiation first increases and then decreases with the increase of input laser energy. The influences of the plasma electron density on the plasma frequency and the plasma attenuation coefficient are investigated to explain the relationship between the total power of the RF radiation and the laser energy. The RF radiation is caused by the following processes. The generated electrons and ions are accelerated away from the core by their thermal pressures. This leads to charge separation and forming the electric dipole moments. These oscillating electric dipoles radiate electromagnetic waves in the RF range. Furthermore, the interactions of electrons with atomic and molecular clusters within the plasma play a major role in RF radiation, and the low frequency electromagnetic radiation takes place from the plasma that is far from fully ionized state. Further study of the characteristics of RF electromagnetic radiation is of great significance for understanding the physical mechanism of the interaction between laser and matter.
      Corresponding author: Gao Xun, songxiaowei@cust.edu.cn;lasercust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575030).
    [1]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503

    [2]

    Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016物理学报 65 110701]

    [3]

    Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131

    [4]

    Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106

    [5]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718

    [6]

    Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864

    [7]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001

    [8]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457

    [9]

    Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001

    [10]

    Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583

    [11]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102

    [12]

    Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11

    [13]

    Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990

    [14]

    Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008

    [15]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308

    [16]

    Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263

    [17]

    Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [18]

    Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327

    [19]

    Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34

    [20]

    Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12

    [21]

    Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003物理学报 52 3098]

    [22]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904

  • [1]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Phys. Scr. 83 055503

    [2]

    Li N, Bai Y, Liu P 2016 Acta Phys. Sin. 65 110701(in Chinese)[李娜, 白亚, 刘鹏2016物理学报 65 110701]

    [3]

    Dai J M, Lu X F, Liu J, Ho I C, Karpowicz N, Zhang X 2009 THz Sci. Tech. 2 131

    [4]

    Sizyuk T, Hassanein A 2014 Phys. Plasmas 21 083106

    [5]

    Nakajima H, Shimada Y, Somekawa T, Fujita M, Tanaka K A 2009 IEEE Geosci. Remote. Sens. Lett. 6 718

    [6]

    Basov N G, Kriukov P, Zakharov S, Senatsky Y, Tchekalin S 1968 IEEE J. Quant. Elect. 4 4864

    [7]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244 032001

    [8]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457

    [9]

    Cheng C C, Wright E M, Moloney J V 2001 Phys. Rev. Lett. 87 213001

    [10]

    Hosseini S A, Ferland B, Chin S L 2003 Appl. Phys. B 76 583

    [11]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2014 Appl. Phys. Lett. 105 064102

    [12]

    Consoli F, Angelis R D, Andreoli P, Cristofari G, Giorgio G D 2015 Phys. Procedia 62 11

    [13]

    Balanis C A 1982 Antenna Theory:Analysis and Design (New York:John Wiley & Sons) pp989-990

    [14]

    Kumar V, Elle M, Paturi P K 2017 J. Phys.:Conf. Ser. 823 012008

    [15]

    Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69 308

    [16]

    Leela C, Bagchi S, Kumar V R, Tewari S P, Kiran P P 2013 Laser. Part. Beams. 31 263

    [17]

    Tian Y, Yu W, He F, Xu H, Kumar V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [18]

    Akcasu A Z, Wald L H 1967 Phys. Fluids 10 1327

    [19]

    Jackson J D 1975 Classical Electrodynamics (New York:John Wiley & Sons) pp13-34

    [20]

    Gosnell T R 2002 Fundamentals of Spectroscopy and Laser Physics (Cambridge:Cambridge University Press) p12

    [21]

    Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y, Yang G H 2003 Acta Phys. Sin. 52 3098(in Chinese)[张红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪2003物理学报 52 3098]

    [22]

    Vinoth Kumar L, Manikanta E, Leela Ch, Prem Kiran P 2016 J. Appl. Phys. 119 214904

  • [1] He Xin, Jiang Tao, Zhang Zhen-Fu, Yang Jun-Bo. Bound-state characteristic temperature method and its applications. Acta Physica Sinica, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [2] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [3] Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan. Near infrared characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [4] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [7] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [8] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [9] Yang Hong-Dao, Li Xiao-Hong, Li Guo-Qiang, Yuan Chun-Hua, Tang Duo-Chang, Xu Qin, Qiu Rong, Wang Jun-Bo. Silicon surface microstructures created by 1064 nm Nd∶YAG nanosecond laser. Acta Physica Sinica, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [10] Zhang Hong-Chao, Lu Jian, Ni Xiao-Wu. Experimental diagnosis of electron density of laser induced air plasma by interferometry. Acta Physica Sinica, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [11] Zhang Na-Zhen, Cang Huai-Wen, Wang Wei-Guo, Miao Shu-Yi, Jin Feng, Wu Qing-Hao, Hua Lei, Li Hai-Yang. Multiple ionization of diethyl ether cluster by nanosecond laser: generation of multiply charged ions and the electron energy distribution. Acta Physica Sinica, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [12] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [13] Generation of single plasma channel in air. Acta Physica Sinica, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [14] Hao Zuo-Qiang, Zhang Jie, Yu Jin, Zhang Zhe, Zhong Jia-Yong, Zang Chong-Zhi, Jin Zhan, Wang Zhao-Hua, Wei Zhi-Yi. Fluorescence measurement and acoustic diagnostics of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [15] Zhang Zhe, Zhang Jie, Li Yu-Tong, Hao Zuo-Qiang, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Measurements of electric resistivity of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [16] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [17] Hao Zuo-Qiang, Zhang Jie, Zhang Zhe, Xi Ting-Ting, Zheng Zhi-Yuan, Yuan Xiao-Hui, Wang Zhao-Hua. Third harmonic generation in plasma channels in air induced by intense femtosecond laser pulses. Acta Physica Sinica, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [18] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [19] Kong Xiang-Lei, Luo Xiao-Lin, Niu Dong-Mei, Zhang Xian-Yi, Kai Rui-Feng, Li Hai-Yang. Generation of multi-charged ions in laser-induced ionization of methanol under intense nanosecond laser fields. Acta Physica Sinica, 2004, 53(5): 1340-1345. doi: 10.7498/aps.53.1340
    [20] Bian Bao-min, Chen Jian-ping, Yang Ling, Ni Xiao-wu, Lu Jian. . Acta Physica Sinica, 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
Metrics
  • Abstract views:  6674
  • PDF Downloads:  294
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2017
  • Accepted Date:  08 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回