Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions

Jiang Wei-Man Li Yu-Tong Zhang Zhe Zhu Bao-Jun Zhang Yi-Hang Yuan Da-Wei Wei Hui-Gang Liang Gui-Yun Han Bo Liu Chang Yuan Xiao-Xia Hua Neng Zhu Bao-Qiang Zhu Jian-Qiang Fang Zhi-Heng Wang Chen Huang Xiu-Guang Zhang Jie

Citation:

Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions

Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie
PDF
HTML
Get Citation
  • Microwave radiation in several gigahertz frequency band is a common phenomenon in laser-plasma interactions. It can last hundreds of nanoseconds and cause huge electromagnetic pulse disturbances to electrical devices in experiments. It has been found that the microwave radiation might originate from the oscillation of charged chambers, the return current on target holders, the dipole radiation, the quadrupole radiation, and the electron bunch emitted from the plasma to the vacuum. The microwave radiation waveform, frequency spectrum, and intensity depend on many factors such as laser pulse, target, and chamber parameter. To distinguish the microwave radiation mechanisms, the influence of the experimental parameters on the radiation characteristics should be investigated systematically. In this paper we investigate the microwave radiation influenced by the laser intensity in nanosecond laser-plasma interactions. It is found that the microwave radiation intensity varies nonmonotonically with the laser intensity. For the lower laser intensity, the radiation intensity first increases and then decreases with laser intensity increasing, the radiation field continuously oscillates in tens of nanoseconds, and the radiation spectrum contains two components below and above 0.3 GHz, respectively. For the higher laser intensity, the radiation intensity increases with the laser intensity increasing, the radiation field has a unipolar radiation lasting tens of nanoseconds, and the radiation spectrum mainly includes the component below 0.3 GHz. The waveform and spectrum analysis show that these phenomena are due to the difference of the radiation mechanisms at different laser intensities. The frequency component below and above 0.3 GHz are induced by the electron bunch emitted from the plasma to the vacuum and the dipole radiation respectively. At low laser intensity, both the dipole radiation and the electron bunch emitted from the plasma contribute to the microwave radiation. At high laser intensity, the microwave radiation is mainly produced by the electron beam emitted from the plasma to the vacuum. This work is significant for understanding the microwave radiation mechanisms in nanosecond laser-plasma interactions, and implies the potential to provide a reference to the diagnosing of the escape electrons and the sheath field on the target surface by the microwave radiation in laser-plasma interaction.
      Corresponding author: Li Yu-Tong, ytli@iphy.ac.cn ; Zhang Zhe, zzhang@iphy.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the CAS-JSPS Joint Research Program (External Cooperation Program of the BIC, Chinese Academy of Sciences) (Grant No. 112111KYSB20160015), the National Natural Science Foundation of China (Grant Nos. 11520101003, 11827807, 11861121001), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16010000).
    [1]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, Wonterghem V 2017 Matter Radiat. Extremes 2 37Google Scholar

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [3]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [4]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photon. 6 308Google Scholar

    [5]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005Google Scholar

    [6]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby, D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994Google Scholar

    [7]

    Robinson T S, Consoli F, Giltrap S, Eardley S J, Hicks G S, Ditter E J, Ettlinger O, Stuart N H, Notley M, de Angelis R, Najmudin Z, Smith R A 2017 Sci. Rep. 7 983Google Scholar

    [8]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 10Google Scholar

    [9]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457Google Scholar

    [10]

    Gerdin G, Tanis M J, Venneri F 1986 Plasma Phys. Control. Fusion 28 527Google Scholar

    [11]

    Mead M J, Neely D, Gauoin J, Heathcote R, Patel P 2004 Rev. Sci. Instrum. 75 4225Google Scholar

    [12]

    Raimbourg J 2004 Rev. Sci. Instrum. 75 4234Google Scholar

    [13]

    Felber F S 2005 Appl. Phys. Lett. 86 231501Google Scholar

    [14]

    Remo J L, Adams R G, Jones M C 2007 Appl. Opt. 46 6166Google Scholar

    [15]

    Miragliotta J, Brawley B, Sailor C, Spicer J B, Spicer J W M 2011 Proc. SPIE 8037 80370N-1Google Scholar

    [16]

    Chen Z Y, Li J F, Yu Y, Wang J X, Li X Y, Peng Q X, Zhu W J 2012 Phys. Plasmas 19 113116Google Scholar

    [17]

    戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全 2017 物理学报 66 185201Google Scholar

    Dai Y J, Song X W, Gao X, Wang X S, Lin J Q 2017 Acta Phys. Sin. 66 185201Google Scholar

    [18]

    Englesbe A, Elle J, Reid R, Lucero A, Pohle H, Domonkos M, Kalmykov S, Krushelnick K, Schmitt-Sody A 2018 Opt. Lett. 43 4953

    [19]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.: Conf. Ser. 244 032001Google Scholar

    [20]

    Tao Y, Yang M, Wang C, Yang W, Li Y, Liu S, Jiang S, Ding Y, Xiao S 2016 Photon. Sens. 6 249Google Scholar

    [21]

    Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P, Neely D 2018 High Power Laser Sci. Eng. 6 e21Google Scholar

    [22]

    Brown C G, Ayers J, Felker B, Ferguson W, Holder J P, Nagel S R, Piston K W, Simanovskaia N, Throop A L, Chung M, Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729Google Scholar

    [23]

    Brown C G, Clancy T J, Eder D C, Ferguson W, Throop A L 2013 EPJ Web of Conferences 59 08012Google Scholar

    [24]

    Consoli F, de Angelis R, de Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D, Dudzak R 2018 Plasma Phys. Control. Fusion 60 105006Google Scholar

    [25]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Plasma Scr. 83 055503

    [26]

    Consoli F, de Angelis R, Duvillaret L, Andreoli P L, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C 2016 Sci. Rep. 6 27889Google Scholar

    [27]

    Krása J, de Marco M, Cikhardt J, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J, Dudžák R 2017 Plasma Phys. Control. Fusion 59 065007Google Scholar

  • 图 1  实验布局图

    Figure 1.  Experimental setup.

    图 2  不同激光强度下, 四个方向上对应的电场峰幅值

    Figure 2.  Peak E-field magnitude versus laser intensity in the four different directions.

    图 3  入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上的电场时间波形

    Figure 3.  Electric field waveforms detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.

    图 4  入射激光强度分别为(a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, (f) 6.2 × 1015 W/cm2时, 靶前靠近法线方向上电场的频谱分布

    Figure 4.  Frequency spectra of the electric fields detected by the monopole antenna-3 at laser intensities of (a) 5.7 × 1014, (b) 7.4 × 1014, (c) 1.5 × 1015, (d) 2.0 × 1015, (e) 2.9 × 1015, and (f) 6.2 × 1015 W/cm2.

    图 5  入射激光强度为1.5 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4

    Figure 5.  Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 1.5 × 1015 W/cm2.

    图 6  入射激光强度为6.2 × 1015 W/cm2时, 不同方向测量的电场波形及其频谱分布 (a)和(e)对应单极天线-1; (b)和(f)对应单极天线-2; (c)和(g)对应单极天线-3; (d)和(h)对应单极天线-4

    Figure 6.  Electric field waveforms and their corresponding frequency spectra detected by the four monopole antennas. (a) and (e) correspond to the monopole antenna-1, (b) and (f) correspond to the monopole antenna-2, (c) and (g) correspond to the monopole antenna-3, (d) and (h) correspond to the monopole antenna-4. The laser intensity is 6.2 × 1015 W/cm2.

    图 7  不同方向测量的微波辐射能量随激光强度的变化(a)单位立体角内产生的总辐射能; (b)单位立体角内产生的0.3 GHz以下的辐射能; (c)单位立体角内产生的0.3 GHz以上的辐射能

    Figure 7.  Radiation energy versus laser intensity at different directions: (a) Total radiation energy detected by the antennas; (b) radiation energy at frequencies lower than 0.3 GHz; (c) radiation energy at frequencies upper than 0.3 GHz.

  • [1]

    Campbell E M, Goncharov V N, Sangster T C, Regan S P, Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J, Igumenshchev I V, Seka W, Solodov A A, Maximov A V, Marozas J A, Collins T J B, Turnbull D, Marshall F J, Shvydky A, Knauer J P, McCrory R L, Sefkow A B, Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C, Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J, Obenschain K, Obenschain S P, Reyes S, Wonterghem V 2017 Matter Radiat. Extremes 2 37Google Scholar

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945Google Scholar

    [3]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [4]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photon. 6 308Google Scholar

    [5]

    Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D, Hulin D 2004 Phys. Rev. Lett. 93 135005Google Scholar

    [6]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby, D R, McKenna P, Brenner C M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. USA 116 3994Google Scholar

    [7]

    Robinson T S, Consoli F, Giltrap S, Eardley S J, Hicks G S, Ditter E J, Ettlinger O, Stuart N H, Notley M, de Angelis R, Najmudin Z, Smith R A 2017 Sci. Rep. 7 983Google Scholar

    [8]

    Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 10Google Scholar

    [9]

    Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457Google Scholar

    [10]

    Gerdin G, Tanis M J, Venneri F 1986 Plasma Phys. Control. Fusion 28 527Google Scholar

    [11]

    Mead M J, Neely D, Gauoin J, Heathcote R, Patel P 2004 Rev. Sci. Instrum. 75 4225Google Scholar

    [12]

    Raimbourg J 2004 Rev. Sci. Instrum. 75 4234Google Scholar

    [13]

    Felber F S 2005 Appl. Phys. Lett. 86 231501Google Scholar

    [14]

    Remo J L, Adams R G, Jones M C 2007 Appl. Opt. 46 6166Google Scholar

    [15]

    Miragliotta J, Brawley B, Sailor C, Spicer J B, Spicer J W M 2011 Proc. SPIE 8037 80370N-1Google Scholar

    [16]

    Chen Z Y, Li J F, Yu Y, Wang J X, Li X Y, Peng Q X, Zhu W J 2012 Phys. Plasmas 19 113116Google Scholar

    [17]

    戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全 2017 物理学报 66 185201Google Scholar

    Dai Y J, Song X W, Gao X, Wang X S, Lin J Q 2017 Acta Phys. Sin. 66 185201Google Scholar

    [18]

    Englesbe A, Elle J, Reid R, Lucero A, Pohle H, Domonkos M, Kalmykov S, Krushelnick K, Schmitt-Sody A 2018 Opt. Lett. 43 4953

    [19]

    Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.: Conf. Ser. 244 032001Google Scholar

    [20]

    Tao Y, Yang M, Wang C, Yang W, Li Y, Liu S, Jiang S, Ding Y, Xiao S 2016 Photon. Sens. 6 249Google Scholar

    [21]

    Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P, Neely D 2018 High Power Laser Sci. Eng. 6 e21Google Scholar

    [22]

    Brown C G, Ayers J, Felker B, Ferguson W, Holder J P, Nagel S R, Piston K W, Simanovskaia N, Throop A L, Chung M, Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729Google Scholar

    [23]

    Brown C G, Clancy T J, Eder D C, Ferguson W, Throop A L 2013 EPJ Web of Conferences 59 08012Google Scholar

    [24]

    Consoli F, de Angelis R, de Marco M, Krasa J, Cikhardt J, Pfeifer M, Margarone D, Klir D, Dudzak R 2018 Plasma Phys. Control. Fusion 60 105006Google Scholar

    [25]

    Chen Z Y, Li J F, Li J, Peng Q X 2011 Plasma Scr. 83 055503

    [26]

    Consoli F, de Angelis R, Duvillaret L, Andreoli P L, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C 2016 Sci. Rep. 6 27889Google Scholar

    [27]

    Krása J, de Marco M, Cikhardt J, Pfeifer M, Velyhan A, Klír D, Řezáč K, Limpouch J, Krouský E, Dostál J, Ullschmied J, Dudžák R 2017 Plasma Phys. Control. Fusion 59 065007Google Scholar

  • [1] Sun Wei, Lü Chong, Lei Zhu, Wang Zhao, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets. Acta Physica Sinica, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [4] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [6] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] Wang Xing-Sheng, Ma Yan-Ming, Gao Xun, Lin Jing-Quan. Near infrared characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [8] Dai Yu-Jia, Song Xiao-Wei, Gao Xun, Wang Xing-Sheng, Lin Jing-Quan. Characteristics of radio-frequency emission from nanosecond laser-induced breakdown plasma of air. Acta Physica Sinica, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [9] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] Xin Jian-Ting, Zhao Yong-Qiang, Chu Gen-Bai, Xi Tao, Shui Min, Fan Wei, He Wei-Hua, Gu Yu-Qiu. Experimental investigation of tin fragments mixing with gas subjected to laser driven shock. Acta Physica Sinica, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [11] Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie. Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock. Acta Physica Sinica, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [12] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [13] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [14] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [15] Xin Jian-Ting, Gu Yu-Qiu, Li Ping, Luo Xuan, Jiang Bai-Bin, Tan Fang, Han Dan, Wu Yin-Zhong, Zhao Zong-Qing, Shu Jing-Qin, Zhang Bao-Han. Study on metal ejection under laser shock loading. Acta Physica Sinica, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [16] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [17] Yang Ru, Zhang Bo, Qiu Dong-Yuan. Chaotic point process description of converter discrete subsystem and EMI suppression. Acta Physica Sinica, 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [18] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [19] Yang Ru, Zhang Bo. Quantification description of the chaotic PWM spectrum of the switching converter. Acta Physica Sinica, 2006, 55(11): 5667-5673. doi: 10.7498/aps.55.5667
    [20] ZENG GUI-HUA, ZHU HONG-WEN, XU ZHI-ZHAN. RELATIVISTIC EVEN-ORDER HARMONICS GENERATED IN UNDERDENSE PLASMA. Acta Physica Sinica, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
Metrics
  • Abstract views:  8240
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2019
  • Accepted Date:  20 April 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回