Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation of tin fragments mixing with gas subjected to laser driven shock

Xin Jian-Ting Zhao Yong-Qiang Chu Gen-Bai Xi Tao Shui Min Fan Wei He Wei-Hua Gu Yu-Qiu

Citation:

Experimental investigation of tin fragments mixing with gas subjected to laser driven shock

Xin Jian-Ting, Zhao Yong-Qiang, Chu Gen-Bai, Xi Tao, Shui Min, Fan Wei, He Wei-Hua, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When a shock wave reflects from the free surface of a solid sample, fragments may be emitted from the surface. Understanding the process of the fragments mixing with gas is an important subject for current researches in inertial confinement fusion and high pressure science. Particularly, obtaining the fragments size and distribution is important for developing or validating the physical fragmentation model. At present, the reported quantitative data are less due to the great challenges in the time-resolved measurements of the fragments.#br#Recently, high-power laser has appeared as a promising shock loading means for fragment investigation. The advantages existing in such means mainly include small sample (~μm to mm-order), convenient dynamic diagnosis and soft recovery of fragments. Our group has performed the dynamic fragmentation experiments under laser shock loading metal. The ejected fragments under different loading pressures are softly recovered by low density medium of poly 4-methy1-1-pentene (PMP) foam. The sizes, shapes and penetration depths of the fragments are quantitatively analyzed by X-ray micro-tomography and the improved-watershed method.#br#This paper mainly reports the research advances in the process of the fragments mixing with gas. The laser-driven shock experiments of tin sample are performed at Shenguang-Ⅲ prototype laser facility. Under two typical loading pressures, the fragments mixed with gas (N2) are recovered by PMP foam with a density of 200 mg/cm3, and the pressure of gas is 1 atm. The high resolution reconstructed images of the recovered fragments provided by X-ray micro-tomography and computed tomography reconstruction show that the shapes of the fragments are almost homogeneous, and their sizes are in a range of about 1-20 micron. These images are very different from the images of the fragments recovered in vacuum under similar loading pressures. The observed fragments under loading pressure less than 10 GPa in vacuum are some thin layers, while the loading pressure is increased up to more than 30 GPa, a large number of small spherical particles are observed in the front of the recovery fragments, thin layers in the middle, and these spherical particles have diameters ranging from one dozen to several hundreds of micrometers. The sizes and number of fragments are analyzed by the improved watershed method. The resulting distribution of the fragments mixed with gas follows bilinear exponential distribution. Comprehensive analyses of former simulations and our experimental results show that the secondary fragmentation should occur in the process of the fragments mixing with gas.
      Corresponding author: He Wei-Hua, heweihua2004@sina.com;yqgu@caep.ac.cn ; Gu Yu-Qiu, heweihua2004@sina.com;yqgu@caep.ac.cn
    • Funds: Project supported by the Science and Technology on Plasma Physics Laboratory, China (Grant No. 9140C680305140C 68289).
    [1]

    Walsh J M, Shreffler R G, Willig F J 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Barker L M 1974 J. Appl. Phys. 45 2540

    [3]

    Andriot P, Chapron P, Olive F 1982 AIP Conf. Proc. 78 505

    [4]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [5]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [6]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [7]

    Signor L, Rességuier T D, Roy G, Dragon A, Lorca F 2007 AIP Conf. Proc. 955 593

    [8]

    Rességuier T D, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Let. 92 131910

    [9]

    Signor L, Lescoute E, Loison D, Rességuier T D, Dragon A, Roy G 2010 EPJ Web Conf. 6 39012

    [10]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [11]

    Rességuier T D, Lescoute E, Chevalier J M, Maire P H, Breil J, Schurtz G 2012 AIP Conf. Proc. 1426 1015

    [12]

    Rességuier T D, Lescoute E, Sollier A, Prudhomme G, Mercier P 2014 J. Appl. Phys. 115 043525

    [13]

    Xin J T, Gu Y Q, Li P, Luo X, Jiang B B, Tan F, Han D, Wu Y Z, Zhao Z Q, Shu J Q, Zhang B H 2012 Acta Phys. Sin. 61 236201(in Chinese)[辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉2012物理学报 61 236201]

    [14]

    Xin J T, He W H, Shao J L, Li J, Wang P, Gu Y Q 2014 J. Phys. D:Appl. Phys. 47 325304

    [15]

    He W H, Xin J T, Chu G B, Li J, Shao J L, Lu F, Shui M, Qian F, Cao L F, Wang P, Gu Y Q 2014 Opt. Express 22 18924

    [16]

    hang L, Li M, Zhang Y Q, He J, Shen H H, Tao Y H, Tan F L, Zhao J H 2017 Chin. J. High Press. Phys. 31 187(in Chinese)[张黎, 李牧, 张永强, 贺佳, 沈欢欢, 陶彦辉, 谭福利, 赵剑衡2017高压物理学报 31 187]

    [17]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [18]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703(in Chinese)[王裴, 孙海权, 邵建立, 秦承森, 李欣竹2012物理学报 61 234703]

  • [1]

    Walsh J M, Shreffler R G, Willig F J 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Barker L M 1974 J. Appl. Phys. 45 2540

    [3]

    Andriot P, Chapron P, Olive F 1982 AIP Conf. Proc. 78 505

    [4]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [5]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [6]

    Sorenson D S, Minich R W, Romero J L, Tunnell T W, Malone R M 2002 J. Appl. Phys. 92 5830

    [7]

    Signor L, Rességuier T D, Roy G, Dragon A, Lorca F 2007 AIP Conf. Proc. 955 593

    [8]

    Rességuier T D, Signor L, Dragon A, Boustie M, Berthe L 2008 Appl. Phys. Let. 92 131910

    [9]

    Signor L, Lescoute E, Loison D, Rességuier T D, Dragon A, Roy G 2010 EPJ Web Conf. 6 39012

    [10]

    Signor L, Rességuier T D, Dragon A, Roy G, Fanget A, Faessel M 2010 Int. J. Impact Eng. 37 887

    [11]

    Rességuier T D, Lescoute E, Chevalier J M, Maire P H, Breil J, Schurtz G 2012 AIP Conf. Proc. 1426 1015

    [12]

    Rességuier T D, Lescoute E, Sollier A, Prudhomme G, Mercier P 2014 J. Appl. Phys. 115 043525

    [13]

    Xin J T, Gu Y Q, Li P, Luo X, Jiang B B, Tan F, Han D, Wu Y Z, Zhao Z Q, Shu J Q, Zhang B H 2012 Acta Phys. Sin. 61 236201(in Chinese)[辛建婷, 谷渝秋, 李平, 罗炫, 蒋柏斌, 谭放, 韩丹, 巫殷忠, 赵宗清, 粟敬钦, 张保汉2012物理学报 61 236201]

    [14]

    Xin J T, He W H, Shao J L, Li J, Wang P, Gu Y Q 2014 J. Phys. D:Appl. Phys. 47 325304

    [15]

    He W H, Xin J T, Chu G B, Li J, Shao J L, Lu F, Shui M, Qian F, Cao L F, Wang P, Gu Y Q 2014 Opt. Express 22 18924

    [16]

    hang L, Li M, Zhang Y Q, He J, Shen H H, Tao Y H, Tan F L, Zhao J H 2017 Chin. J. High Press. Phys. 31 187(in Chinese)[张黎, 李牧, 张永强, 贺佳, 沈欢欢, 陶彦辉, 谭福利, 赵剑衡2017高压物理学报 31 187]

    [17]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [18]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703(in Chinese)[王裴, 孙海权, 邵建立, 秦承森, 李欣竹2012物理学报 61 234703]

  • [1] Sun Wei, Lü Chong, Lei Zhu, Wang Zhao, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on evolution of laser-driven jets. Acta Physica Sinica, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [4] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [5] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [6] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] Shui Min, Yu Ming-Hai, Chu Gen-Bai, Xi Tao, Fan Wei, Zhao Yong-Qiang, Xin Jian-Ting, He Wei-Hua, Gu Yu-Qiu. Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser. Acta Physica Sinica, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [8] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [9] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie. Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock. Acta Physica Sinica, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [11] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [12] Wang Pei, Sun Hai-Quan, Shao Jian-Li, Qin Cheng-Sen, Li Xin-Zhu. Numerical simulation on mixing process of ejecta and gas. Acta Physica Sinica, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [13] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [14] Xin Jian-Ting, Gu Yu-Qiu, Li Ping, Luo Xuan, Jiang Bai-Bin, Tan Fang, Han Dan, Wu Yin-Zhong, Zhao Zong-Qing, Shu Jing-Qin, Zhang Bao-Han. Study on metal ejection under laser shock loading. Acta Physica Sinica, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [15] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [16] Wang Min, Cen Yu-Wan, Hu Xiao-Fang, Yu Xiao-Liu, Zhu Pei-Ping. Error mechanism of light source for synchrotron radiation computed tomography technique. Acta Physica Sinica, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [17] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [18] Wang Min, Hu Xiao-Fang, Wu Xiao-Ping. Analysis of contrast error mechanism for synchrotron radiation computed-tomography technique. Acta Physica Sinica, 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [19] Su Hui-Min, Zheng Xi Guang, Wang Xia, Xu Jian-Feng, Wang He-Zhou. . Acta Physica Sinica, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
    [20] ZENG GUI-HUA, ZHU HONG-WEN, XU ZHI-ZHAN. RELATIVISTIC EVEN-ORDER HARMONICS GENERATED IN UNDERDENSE PLASMA. Acta Physica Sinica, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
Metrics
  • Abstract views:  5758
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2017
  • Accepted Date:  06 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回