Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma

Yue Dong-Ning Dong Quan-Li Chen Min Zhao Yao Geng Pan-Fei Yuan Xiao-Hui Sheng Zheng-Ming Zhang Jie

Citation:

Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma

Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
Get Citation
  • Weak and strong collisionless electrostatic shock wave (CESW) generated in the interaction between strong intense laser and near-critical-density plasma are studied by the one-dimensional particle-in-cell simulation in this work. And the effects of the ranges of plasma density profiles, non-relativistic and relativistic laser intensities on the generation of CESWs are also investigated. The non-relativistic weakly driven laser generates the weak CESW in the interaction between the laser and near-critical-density plasma. The electron spectra show double-temperature distribution because the non-relativistic driven laser cannot heat the electrons sufficiently. The low-temperature electrons have an important influence on the generation of weak CESW, and they can also cause the protons to be accelerated and reflected from the CESWs. The spectra of the weak CESW protons show a continuously distributed profile. When the range of plasma density up-ramp is large, the process can be observed that the post-soliton structure evolves into the ion acoustic wave and further into the weak collisionless electrostatic shock wave. When the driven laser intensity is relativistic, the electrons are heated sufficiently to a single relativistic temperature. The effect of the range of plasma density profile on the generation of CESW is further analyzed and it is found that 1) when the range of plasma density up-ramp is large, the potential barrier of ion acoustic wave is shielded by the hot electrons; 2) when the range of plasma density up-ramp is small, the effective distance (i.e. the Debye length) of accelerating field is larger and the endurance time is longer than when the range of plasma density up-ramp is large. This makes the ion acoustic wave structure more stable in its forward propagation process. When the difference in velocity between the ion acoustic wave accelerating protons and the target normal sheath accelerating protons satisfies the proton reflection condition of CESW, the ion acoustic wave further evolves into the strong CESW, the monoenergetic protons generated at the same time.
      Corresponding author: Dong Quan-Li, qldong@aphy.iphy.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204131), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDA25030300, XDA25010100), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD44), and the Basic and Applied Basic Research Foundation of Guangdong, China (Grant No. 2023A1515011695).
    [1]

    Moiseev S S, Sagdeev R Z 1963 J. Nucl. Energy, Part C Plasma Phys. 5 43Google Scholar

    [2]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [3]

    Ghavamian P, Schwartz S J, Mitchell J, Masters A, Laming J M 2013 Space Sci. Rev. 178 633Google Scholar

    [4]

    Waxman E 2006 Plasma Phys. Control. Fusion 48 B137Google Scholar

    [5]

    Nishikawa K -I, Hardee P, Richardson G, Preece R, Sol H, Fishman G J 2003 Astrophys. J. 595 555Google Scholar

    [6]

    Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Masakatsu M, Sheng Z M 2022 Astrophys. J. 931 36Google Scholar

    [7]

    Drake R P 2000 Phys. Plasmas 7 4690Google Scholar

    [8]

    Courtois C, Grundy R A D, Ash A D, Chambers D M, Woolsey N C, Dendy R O, McClements K G 2004 Phys. Plasmas 11 3386Google Scholar

    [9]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [10]

    Denavit J 1992 Phys. Rev. Lett. 69 3052Google Scholar

    [11]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [12]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Bari M A, Zhang J 2007 Phys. Plasmas 14 053102Google Scholar

    [13]

    Liu M, Weng S M, Li Y T, Yuan D W, Chen M, Mulser P, Sheng Z M, Murakami M, Yu L L, Zheng X L, Zhang J 2016 Phys. Plasmas 23 113103Google Scholar

    [14]

    Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B, Joshi C 2012 Phys. Rev. Lett. 109 215001Google Scholar

    [15]

    Zhang W L, Qiao B, Huang T W, X. F. Shen, W. Y. You, X. Q. Yan, S. Z. Wu, Zhou C T, He X T 2016 Phys. Plasmas 23 073118Google Scholar

    [16]

    Zhang W L, Qiao B, Shen X F, You W Y, Huang T W, Yan X Q, Wu S Z, Zhou C T, He X T 2016 New J. Phys. 18 093029Google Scholar

    [17]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [18]

    Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X, Xu Z Z 2017 Phys. Rev. Lett. 119 164801Google Scholar

    [19]

    Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I, Najmudin Z 2016 J. Plasma Phys. 82 415820101Google Scholar

    [20]

    Marquès J -R, Loiseau P, Bonvalet J, Tarisien M, d'Humières E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J, Tikhonchuk V 2021 Phys. Plasmas 28 023103Google Scholar

    [21]

    Puyuelo-Valdes P, Henares J L, Hannachi F, Ceccotti T, Domange J, Ehret M, d'Humieres E, Lancia L, Marquès J -R, Ribeyre X, Santos J J, Tikhonchuk V, Tarisien M 2019 Phys. Plasmas 26 123109Google Scholar

    [22]

    Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P, Ting A 2016 Phys. Rev. Lett. 117 165001Google Scholar

    [23]

    Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X, Zhang J 2022 Phys. Plasmas 29 123103Google Scholar

    [24]

    Deng Y Q, Yue D N, Luo M F, Zhao X, Li Y J, Ge X L, Liu F, Weng S M, Chen M, Yuan X H, Zhang J 2022 High Power Laser Sci. 10 e39Google Scholar

    [25]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [26]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Z, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [27]

    Liu Y, Klimo O, Esirkepov T Z, Bulanov S V, Gu Y, Weber S, Korn G 2015 Phys. Plasmas 22 112302Google Scholar

    [28]

    Yue D N, Chen M, Zhao Y, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Chin. Phys. B 31 045205Google Scholar

    [29]

    Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M, Zhang J 2021 Phys. Plasmas 28 042303Google Scholar

    [30]

    Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A, Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009Google Scholar

    [31]

    Yi L Q, Pusztai I, Pukhov A, Shen B F and Fülöp T 2019 J. Plasma Phys. 85 905850403Google Scholar

    [32]

    Yue D N, Chen M, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Plasma Phys. Control. Fusion 64 045025Google Scholar

    [33]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [34]

    Yuan D W, Li Y T, Liu M, Zhong J Y, Zhu B J, Li Y F, Wei H G, Han B, Pei X X, Zhao J R, Li F, Zhang Z, Liang G Y, Wang F L, Weng S M, Li Y J, Jiang S E, Du K, Ding Y K, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2017 Sci. Rep. 7 42915Google Scholar

    [35]

    Chenais-Popovics C, Renaudin P, Rancu O, Gilleron F, Gauthier J C, Larroche O, Peyrusse O, Dirksmöller M, Sondhauss P, Missalla T, Uschmann I, Förster E, Renner O, Krousky E 1997 Phys. Plasmas 4 190Google Scholar

  • 图 1  初始激光等离子体条件设置, 驱动激光分为弱光强(a0 = 0.5)和强光强(a0 = 3.0)两种. 近临界密度分布分为10 μm和40 μm线性上升沿两种情况, 峰值密度均为1.5nc, 下降沿均为指数分布, 特征长度为8 μm

    Figure 1.  The setup of initial laser-plasma conditions, the drive intense lasers are divided as the weak intensity and the strong intensity corresponding to the normalized amplitude as a0 = 0.5 and a0 = 3.0. The density profiles are set up as 10 μm and 40 μm linear density up-ramp respectively. The peak densities both are 1.5nc. The density down-ramps both are exponentially distributed which the characteristic scale is 8 μm.

    图 2  t = 150T0, t = 350T0, t = 500T0时刻, 弱驱动光强下, 质子密度np (a), (c) 和 纵向加速电场Ex (b), (d) 的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布, T0为对应波长1.0 μm的归一化激光周期

    Figure 2.  Distributions of (a), (c) the proton density np and (b), (d) the longitudinal electric field Ex with the weak drive laser intensity at t = 150T0, t = 350T0, t = 500T0: (a), (b) plasma density profile 1; (c), (d) plasma density profile 2, T0 is the normalized laser period which is corresponding to 1.0 μm wavelength.

    图 3  (a) 图2(a)A点(蓝线)和图2(c)B点(红线)处激光电场Ez随时间的分布, (b)对应的频谱分布, ω0为入射激光角频率

    Figure 3.  (a) Distributions of the laser electric field Ez of point A in Fig.2(a) (blue line) and point B in Fig.2(c) (red line); (b) the corresponding frequency spectrum, ω0 is the angular frequency of incident laser.

    图 4  t = 500T0时刻, 弱驱动光强下, 质子在相空间(x, px)中的分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布; (c) 对应的动量px > 0的质子能谱分布

    Figure 4.  Protons distributions in phase-space (x, px) with the weak drive laser intensity at t = 500T0: (a) Plasma density profile 1; (b) plasma density profile 2; (c) the corresponding energy spectra for protons with proton momenta px > 0 at t = 500T0.

    图 5  t = 500T0时刻, 弱驱动光强下, 电子能谱和拟合电子温度Te分布(低温TeL和高温TeH) (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布

    Figure 5.  Distributions of the electron energy spectrum and fitted electron temperature Te (low temperature TeL and high temperature TeH) with the weak drive laser intensity at t = 500T0: (a) Plasma density profile 1, (b) plasma density profile 2.

    图 6   t = 100T0, t = 150T0, t = 200T0时刻, 强驱动光强下, 质子密度np (a), (c)和纵向加速电场Ex (b), (d)的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布.

    Figure 6.  Distributions of the proton density np(a), (c) and the longitudinal electric field Ex (b), (d) with the strong drive laser intensity at t = 100T0, t = 150T0, t = 200T0: (a), (b) Plasma density profile 1; (c), (d) plasma density profile 2.

    图 7  t = 300T0, t = 350T0, t = 400T0时刻, 强驱动光强下, 质子密度np (a), (c)和纵向加速电场Ex (b), (d)的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布

    Figure 7.  Distributions of the proton density np(a), (c) and the longitudinal electric field Ex(b), (d) with the strong drive laser intensity at t = 300T0, t = 350T0, t = 400T0: (a), (b) Plasma density profile 1; (c), (d) plasma density profile 2.

    图 8  t = 300T0, t = 350T0, t = 400T0时刻, 强驱动光强下, 质子在相空间(x, px)中的分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布; (c) t = 400T0时刻, 对应的动量px > 0的质子能谱分布

    Figure 8.  Protons distributions in phase-space (x, px) with the strong drive laser intensity at t = 300T0, t = 350T0 and t = 400T0: (a) Plasma density profile 1; (b) plasma density profile 2; (c) the corresponding energy spectra for protons with proton momenta px > 0 at t = 400T0.

    图 9  t = 400T0时刻, 强驱动光强下, 电子能谱和拟合电子温度Te分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布

    Figure 9.  Distributions of the electron energy spectrum and fitted electron temperature Te with the strong drive laser intensity at t = 400T0: (a) Plasma density profile 1; (b) plasma density profile 2.

  • [1]

    Moiseev S S, Sagdeev R Z 1963 J. Nucl. Energy, Part C Plasma Phys. 5 43Google Scholar

    [2]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [3]

    Ghavamian P, Schwartz S J, Mitchell J, Masters A, Laming J M 2013 Space Sci. Rev. 178 633Google Scholar

    [4]

    Waxman E 2006 Plasma Phys. Control. Fusion 48 B137Google Scholar

    [5]

    Nishikawa K -I, Hardee P, Richardson G, Preece R, Sol H, Fishman G J 2003 Astrophys. J. 595 555Google Scholar

    [6]

    Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Masakatsu M, Sheng Z M 2022 Astrophys. J. 931 36Google Scholar

    [7]

    Drake R P 2000 Phys. Plasmas 7 4690Google Scholar

    [8]

    Courtois C, Grundy R A D, Ash A D, Chambers D M, Woolsey N C, Dendy R O, McClements K G 2004 Phys. Plasmas 11 3386Google Scholar

    [9]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [10]

    Denavit J 1992 Phys. Rev. Lett. 69 3052Google Scholar

    [11]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [12]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Bari M A, Zhang J 2007 Phys. Plasmas 14 053102Google Scholar

    [13]

    Liu M, Weng S M, Li Y T, Yuan D W, Chen M, Mulser P, Sheng Z M, Murakami M, Yu L L, Zheng X L, Zhang J 2016 Phys. Plasmas 23 113103Google Scholar

    [14]

    Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B, Joshi C 2012 Phys. Rev. Lett. 109 215001Google Scholar

    [15]

    Zhang W L, Qiao B, Huang T W, X. F. Shen, W. Y. You, X. Q. Yan, S. Z. Wu, Zhou C T, He X T 2016 Phys. Plasmas 23 073118Google Scholar

    [16]

    Zhang W L, Qiao B, Shen X F, You W Y, Huang T W, Yan X Q, Wu S Z, Zhou C T, He X T 2016 New J. Phys. 18 093029Google Scholar

    [17]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [18]

    Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X, Xu Z Z 2017 Phys. Rev. Lett. 119 164801Google Scholar

    [19]

    Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I, Najmudin Z 2016 J. Plasma Phys. 82 415820101Google Scholar

    [20]

    Marquès J -R, Loiseau P, Bonvalet J, Tarisien M, d'Humières E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J, Tikhonchuk V 2021 Phys. Plasmas 28 023103Google Scholar

    [21]

    Puyuelo-Valdes P, Henares J L, Hannachi F, Ceccotti T, Domange J, Ehret M, d'Humieres E, Lancia L, Marquès J -R, Ribeyre X, Santos J J, Tikhonchuk V, Tarisien M 2019 Phys. Plasmas 26 123109Google Scholar

    [22]

    Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P, Ting A 2016 Phys. Rev. Lett. 117 165001Google Scholar

    [23]

    Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X, Zhang J 2022 Phys. Plasmas 29 123103Google Scholar

    [24]

    Deng Y Q, Yue D N, Luo M F, Zhao X, Li Y J, Ge X L, Liu F, Weng S M, Chen M, Yuan X H, Zhang J 2022 High Power Laser Sci. 10 e39Google Scholar

    [25]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [26]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Z, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [27]

    Liu Y, Klimo O, Esirkepov T Z, Bulanov S V, Gu Y, Weber S, Korn G 2015 Phys. Plasmas 22 112302Google Scholar

    [28]

    Yue D N, Chen M, Zhao Y, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Chin. Phys. B 31 045205Google Scholar

    [29]

    Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M, Zhang J 2021 Phys. Plasmas 28 042303Google Scholar

    [30]

    Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A, Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009Google Scholar

    [31]

    Yi L Q, Pusztai I, Pukhov A, Shen B F and Fülöp T 2019 J. Plasma Phys. 85 905850403Google Scholar

    [32]

    Yue D N, Chen M, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Plasma Phys. Control. Fusion 64 045025Google Scholar

    [33]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [34]

    Yuan D W, Li Y T, Liu M, Zhong J Y, Zhu B J, Li Y F, Wei H G, Han B, Pei X X, Zhao J R, Li F, Zhang Z, Liang G Y, Wang F L, Weng S M, Li Y J, Jiang S E, Du K, Ding Y K, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2017 Sci. Rep. 7 42915Google Scholar

    [35]

    Chenais-Popovics C, Renaudin P, Rancu O, Gilleron F, Gauthier J C, Larroche O, Peyrusse O, Dirksmöller M, Sondhauss P, Missalla T, Uschmann I, Förster E, Renner O, Krousky E 1997 Phys. Plasmas 4 190Google Scholar

  • [1] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [2] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [3] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] Jiang Wei-Man, Li Yu-Tong, Zhang Zhe, Zhu Bao-Jun, Zhang Yi-Hang, Yuan Da-Wei, Wei Hui-Gang, Liang Gui-Yun, Han Bo, Liu Chang, Yuan Xiao-Xia, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, Wang Chen, Huang Xiu-Guang, Zhang Jie. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions. Acta Physica Sinica, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] Wang Jian-Yong, Cheng Xue-Ping, Zeng Ying, Zhang Yuan-Xiang, Ge Ning-Yi. Quasi-soliton solution of Korteweg-de Vries equation and its application in ion acoustic waves. Acta Physica Sinica, 2018, 67(11): 110201. doi: 10.7498/aps.67.20180094
    [7] Hu Guang-Hai, Jin Xiao-Li, Zhang Qiao-Feng, Xie Jin-Lin, Liu Wan-Dong. Measurement of ion temperature by ion-acoustic waves Landau damping in oxide cathode plasma. Acta Physica Sinica, 2015, 64(18): 189401. doi: 10.7498/aps.64.189401
    [8] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [9] Chen Gen-Yu, Deng Hui, Xu Jian-Bo, Li Zong-Gen, Zhang Ling. Plasma characterization studies of laser dressing for bronze-bonded diamond wheel by a pulsed fiber laser. Acta Physica Sinica, 2013, 62(14): 144204. doi: 10.7498/aps.62.144204
    [10] Duan Ping, Cao An-Ning, Shen Hong-Juan, Zhou Xin-Wei, Qin Hai-Juan, Liu Jin-Yuan, Qing Shao-Wei. Effect of electron temperature on the characteristics of plasma sheath in Hall thruster. Acta Physica Sinica, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [12] Meng Shi-Jian, Li Zheng-Hong, Qin Yi, Ye Fan, Xu Rong-Kun. X-ray continuum spectra for diagnosing plasma temperaturein aluminum wire array Z-pinches. Acta Physica Sinica, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [13] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [14] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [15] Guo Qing-Lin, Zhou Yu-Long, Zhang Bo, Zhang Qiu-Lin, Zhang Jin-Ping, Huai Su-Fang. Influence of matrices on electron temperature of laser micro-plasma in argon atmosphere at reduced pressure. Acta Physica Sinica, 2007, 56(9): 5318-5322. doi: 10.7498/aps.56.5318
    [16] Chen Zhuo, He Wei, Pu Yi-Kang. Measurement of metastable state densities and electron temperatures in an electron cyclotron resonance argon plasma. Acta Physica Sinica, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [17] Huang Song, Ning Zhao-Yuan, Xin Yu, Gan Zhao-Qiang. Characteristics of two-electron-temperature in inductively coupled CF4 plasmas. Acta Physica Sinica, 2004, 53(10): 3394-3397. doi: 10.7498/aps.53.3394
    [18] Yang Jia-Min, Ding Yao-Nan, Chen Bo, Zheng Zhi-Jian, Yang Guo-Hong, Zhang Bao-Han, Wang Yao-Mei, Zhang Wen-Hai. Electron temperature measurement of low-energy laser produced plasma using iso-electronic x-ray spectroscopy. Acta Physica Sinica, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] ZHENG JIAN, LIU WAN-DONG, YU CHANG-XUAN. EFFECT OF ION-SOUND WAVES ON ELECTRON TRANSPORT. Acta Physica Sinica, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
    [20] CHEN BO, ZHENG ZHI-JIAN, DING YONG-KUN, LI SAN-WEI, WANG YAO-MEI. DETERMINATION OF ELECTRON TEMPERATURE IN LASER-PRODUCED PLASMAS BY ISOELECTRONIC XRAY SPECTROSCOPY. Acta Physica Sinica, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
Metrics
  • Abstract views:  4027
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2023
  • Accepted Date:  15 March 2023
  • Available Online:  27 March 2023
  • Published Online:  05 June 2023

/

返回文章
返回