Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of single axis strain on site occupation and diffusion of hydrogen atom in α-Fe

Li Shou-Ying Wang Yong Zhao Wei-Min

Citation:

Influence of single axis strain on site occupation and diffusion of hydrogen atom in α-Fe

Li Shou-Ying, Wang Yong, Zhao Wei-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known, hydrogen plays an important role in degrading mechanical properties of steel due to hydrogen embrittlement behavior. Thus, much attention should be paid to the interaction between hydrogen atom and Fe matrix especially in theoretical calculation and mechanism study. In this paper, the site occupations of hydrogen atom under different single axis strains in interstitial of α-Fe atoms are studied by the first principles calculation based on the spin-polarized density functional theory. The Kohn-Sham equations are solved under periodic boundary conditions, by using revised Perdew-Burke-Ernzerhof version of the generalized gradient approximation to account for the electron exchange and correlation. The total energy of the steady state crystal, binding energy, solution energy, density of states, charge density difference and charge population are calculated. The analyses of solution energy and density of states indicate that the hydrogen atom preferentially occupies the tetrahedral interstitial of α-Fe atoms under different single axis strains. With increasing tensile strain or reducing compressive strain, hydrogen atom prefers to occupy the site of tetrahedral interstitial. The analyses of charge population and charge density difference reveal that the hydrogen atom collects charges from Fe atoms, leading to electron density redistribution. The tensile strain reduces the charge transfer slightly while the compressive stress promotes the transfer process. The LST/QST (linear synchronous transit/quadratic synchronous transit) transition state search method is used to investigate the diffusion of hydrogen atom between two tetrahedral interstitials along the direction perpendicular to strain. Diffusion of hydrogen atom goes through transition state where the hydrogen atom is coordinated at octahedral interstitial. The minimum energy pathway for hydrogen diffusion under strainless state indicates the diffusion activation energy with a value of 0.58 eV. It is noticeable that the diffusion activation energy and the strain conforms to linear relation and are consistent with the fitting formula, Q=0.508+2.6ε. The diffusion activation energy increases with reducing compressive strain or increasing tensile strain. According to the calculation process and analysis results, we introduce the interaction between hydrogen atom and α-Fe at a level of electronic structure systematically and figure out the diffusion of hydrogen influenced by different states of stress.
      Corresponding author: Zhao Wei-Min, zhaowm@upc.edu.cn
    [1]

    Zhao Y Z, Meng B 2015 Chem. Ind. Eng. Prog. 34 3248(in Chinese)[赵永志, 蒙波2015化工进展 34 3248]

    [2]

    Dodds P E, McDowall W 2013 Energy Policy 60 305

    [3]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Natl. Inst. Stan. 115 437

    [4]

    Dodds P E, Demoullin S 2013 Int. J. Hydrogen Energy 38 7189

    [5]

    Jothi S, Croft T N, Wright L 2015 Int. J. Hydrogen. Energy 40 15105

    [6]

    Briottet T, Batisse R, Dinechin G D 2012 Int. J. Hydrogen Energy 37 9423

    [7]

    Han Y D, Jing H Y, Xu L Y 2012 Mater. Chem. Phys. 132 216

    [8]

    Nanninga N, Grochowsi J, Heldt L 2010 Corros. Sci. 52 1237

    [9]

    Sánchez 2008 Phys. Rev. B 78 014113

    [10]

    Gong X G, Zeng Z, Zheng Q Q 1989 J. Phys. Condens. Matter 1 7577

    [11]

    Lee B J, Jang J W 2007 Acta Mater. 55 6779

    [12]

    Sorescu D C 2005 Catal. Today 105 44

    [13]

    Dong N, Zhang C, Liu H, Li J, Wu X 2014 Comp. Mater. Sci. 90 137

    [14]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101(in Chinese)[文平, 李春福, 赵毅, 张凤春, 童丽华2014物理学报 63 197101]

    [15]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102

    [16]

    Counts W, Wolverton C, Gibala R 2011 Acta Mater. 59 5812

    [17]

    Sichone 2014 M. S. Thesis (Harbin:Harbin Institute of Technology)

    [18]

    Zhao W M, Zhang T M, Sun J B 2016 Electrochim. Acta 214 336

    [19]

    Mouanga M, Berçot P, Takadoum J 2010 Corros. Sci. 52 2010

    [20]

    Wang Y F 2014 J. Shanghai. Jiaotong Univ. 48 610(in Chinese)[王燕飞2014上海交通大学学报 48 610]

    [21]

    Kecik D, Aydinol M K 2009 Surf. Sci. 603 304

    [22]

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101(in Chinese)[张凤春, 李春福, 文平, 罗强, 冉曾令2014物理学报 63 227101]

    [23]

    Li X, Gao C, Xiong X L 2015 Int. J. Hydrogen Energy 40 10340

    [24]

    Flynn C P 1972 Point Defects and Diffusion (London:Oxford University) pp25-30

    [25]

    Zang B, Yi D Q 2013 J. Cent. South. Univ. T. 44 2214(in Chinese)[臧冰, 易丹青2013中南大学学报 44 2214]

    [26]

    Li J, Zhen Z Q, Chen D Q, Li S C, Yin S G 2005 Rare Metal 29 539(in Chinese)[李剑, 郑子樵, 陈大钦, 李世晨, 殷顺高2005稀有金属 29 539]

  • [1]

    Zhao Y Z, Meng B 2015 Chem. Ind. Eng. Prog. 34 3248(in Chinese)[赵永志, 蒙波2015化工进展 34 3248]

    [2]

    Dodds P E, McDowall W 2013 Energy Policy 60 305

    [3]

    Nanninga N, Slifka A, Levy Y 2010 J. Res. Natl. Inst. Stan. 115 437

    [4]

    Dodds P E, Demoullin S 2013 Int. J. Hydrogen Energy 38 7189

    [5]

    Jothi S, Croft T N, Wright L 2015 Int. J. Hydrogen. Energy 40 15105

    [6]

    Briottet T, Batisse R, Dinechin G D 2012 Int. J. Hydrogen Energy 37 9423

    [7]

    Han Y D, Jing H Y, Xu L Y 2012 Mater. Chem. Phys. 132 216

    [8]

    Nanninga N, Grochowsi J, Heldt L 2010 Corros. Sci. 52 1237

    [9]

    Sánchez 2008 Phys. Rev. B 78 014113

    [10]

    Gong X G, Zeng Z, Zheng Q Q 1989 J. Phys. Condens. Matter 1 7577

    [11]

    Lee B J, Jang J W 2007 Acta Mater. 55 6779

    [12]

    Sorescu D C 2005 Catal. Today 105 44

    [13]

    Dong N, Zhang C, Liu H, Li J, Wu X 2014 Comp. Mater. Sci. 90 137

    [14]

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101(in Chinese)[文平, 李春福, 赵毅, 张凤春, 童丽华2014物理学报 63 197101]

    [15]

    Jiang D E, Carter E A 2004 Phys. Rev. B 70 064102

    [16]

    Counts W, Wolverton C, Gibala R 2011 Acta Mater. 59 5812

    [17]

    Sichone 2014 M. S. Thesis (Harbin:Harbin Institute of Technology)

    [18]

    Zhao W M, Zhang T M, Sun J B 2016 Electrochim. Acta 214 336

    [19]

    Mouanga M, Berçot P, Takadoum J 2010 Corros. Sci. 52 2010

    [20]

    Wang Y F 2014 J. Shanghai. Jiaotong Univ. 48 610(in Chinese)[王燕飞2014上海交通大学学报 48 610]

    [21]

    Kecik D, Aydinol M K 2009 Surf. Sci. 603 304

    [22]

    Zhang F C, Li C F, Wen P, Luo Q, Ran Z L 2014 Acta Phys. Sin. 63 227101(in Chinese)[张凤春, 李春福, 文平, 罗强, 冉曾令2014物理学报 63 227101]

    [23]

    Li X, Gao C, Xiong X L 2015 Int. J. Hydrogen Energy 40 10340

    [24]

    Flynn C P 1972 Point Defects and Diffusion (London:Oxford University) pp25-30

    [25]

    Zang B, Yi D Q 2013 J. Cent. South. Univ. T. 44 2214(in Chinese)[臧冰, 易丹青2013中南大学学报 44 2214]

    [26]

    Li J, Zhen Z Q, Chen D Q, Li S C, Yin S G 2005 Rare Metal 29 539(in Chinese)[李剑, 郑子樵, 陈大钦, 李世晨, 殷顺高2005稀有金属 29 539]

  • [1] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [3] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [4] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [5] Yang Liang, Wang Cai-Zhuang, Lin Shi-Wei, Cao Yang. First-principles investigation of oxygen diffusion mechanism in -titanium crystals. Acta Physica Sinica, 2017, 66(11): 116601. doi: 10.7498/aps.66.116601
    [6] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [7] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [8] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [9] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [10] Zhang Feng-Chun, Li Chun-Fu, Wen Ping, Luo Qiang, Ran Zeng-Ling. First principles investigation of interaction between interstitial hydrogen atom and Fe metal. Acta Physica Sinica, 2014, 63(22): 227101. doi: 10.7498/aps.63.227101
    [11] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [12] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [13] Meng Fan-Shun, Zhao Xing, Li Jiu-Hui. The first-principles study on properties of B-doped at interstitial site of Cu∑5 grain boundary. Acta Physica Sinica, 2013, 62(11): 117102. doi: 10.7498/aps.62.117102
    [14] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [15] Fan Kai-Min, Yang Li, Peng Shu-Ming, Long Xing-Gui, Wu Zhong-Cheng, Zu Xiao-Tao. First-principles calculation for elastic constantsof α-ScDx(D=H, He). Acta Physica Sinica, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [16] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] Zhang Hui, Zhang Guo-Ying, Xiao Ming-Zhu, Lu Guang-Xia, Zhu Sheng-Long, Zhang Ke. First-principles study on influence of alloying element substitution on dehydrogenation ability of Li4BN3H10 hydrogen storage materials. Acta Physica Sinica, 2011, 60(4): 047109. doi: 10.7498/aps.60.047109
    [18] Shang Jia-Xiang, Yu Tan-Bo. First-principles study of hydrogen atom in interstitial sites of NiAl and Cr. Acta Physica Sinica, 2009, 58(2): 1179-1184. doi: 10.7498/aps.58.1179
    [19] Zhao Wei, Wang Jia-Dao, Liu Feng-Bin, Chen Da-Rong. First principles study of H2O molecule adsorption on Fe(100), Fe(110) and Fe(111) surfaces. Acta Physica Sinica, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
Metrics
  • Abstract views:  5605
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2017
  • Accepted Date:  29 April 2017
  • Published Online:  05 September 2017

/

返回文章
返回