Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Sr doping on electronic structure of La1-xSrxMnO3/LaAlO3/SrTiO3 heterointerface

Ruan Lu-Feng Wang Lei Sun De-Yan

Citation:

Effect of Sr doping on electronic structure of La1-xSrxMnO3/LaAlO3/SrTiO3 heterointerface

Ruan Lu-Feng, Wang Lei, Sun De-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past decades, the interface between two oxides LaAlO3 (LAO) and SrTiO3 (STO) has attracted much attention since a quasi-two-dimensional electron gas (q2DEG) at the interface was observed. It is generally believed that polar discontinuity at polar/non-polar oxide interface is responsible for the emergence of q2DEG at the interface. Recently, how to modulate the q2DEG at the interface is becoming a new research focus. Capping other oxide thin layer on LAO layer is one of alternative approaches to controlling the generation of q2DEG at interface. However the mechanism or origin for tuning q2DEG at capped LAO/STO interface has not yet completely understood. Using the first-principles calculations within the density functional theory, the electronic properties of La1-xSrxMnO3-capped LaAlO3/SrTiO3 heterointerfaces with different doping concentrations of Sr atoms are investigated. The system is composed of four layers of La1-xSrxMnO3 (LSMO), three layers of LAO and four layers of STO, denoted as 4LSMO/3LAO/4STO. The interface is normal to the[001] direction of cubic phase, namely (La1-xSrxO) layer and (MnO2) layer appear alternately at LSMO, and (LaO) layer and (AlO2) layer appear alternately at LAO. In the absence of LSMO layers, q2DEG does not appear at the LAO/STO interface. It is found that the electronic structure of 4LSMO/3LAO/4STO can be tuned significantly by capping LSMO layers. For concentration of doped Sr atoms less than 1/3, a q2DEG at LAO/STO interface is observed. In this case, a strong polarization existing in LSMO, together with the polarization in LAO, forces the electrons to be redistributed, thus inducing the q2DEG at LAO/STO interface. With the increase of the concentration of Sr atoms, the polarization in LSMO becomes weaker and weaker. When the concentration is higher than 1/3, the polaried electric field fails to make the electrons redistributed, thus the q2DEG disappears from interface.#br#Another interesting feature of the present work relates to the distribution of Sr atoms in LSMO. It is found that the electronic structure of 4LSMO/3LAO/4STO changes little with respect to the distribution of Sr atoms in LSMO. The system does not undergo the conductor-to-insulator transition for Sr atoms doping at different sites as long as the concentration of Sr does not change. The reason could be understood as follows. The LSMO layer is in a metallic state, the extra electrons, which are generated due to substituting La with Sr, will be delocalized rather than localized at each doped Sr atom. It is reasonable to expect that the electronic structure of the system should be less sensitive to the specific doping site of Sr in LSMO.
      Corresponding author: Sun De-Yan, dysun@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174079) and the National Basic Research Program of China (Grant No. 2012CB921401).
    [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [2]

    Pentcheva R, Pickett W E 2006 Phys. Rev. B 74 035112

    [3]

    Min S P, Rhim S H, Freeman A J 2006 Phys. Rev. B 74 205416

    [4]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106

    [5]

    Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602

    [6]

    Delugas P, Filippetti A, Fiorentini V 2011 Phys. Rev. Lett. 106 166807

    [7]

    Cen C, Thiel S, Mannhart J, Levy J 2009 Science 323 1026

    [8]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765

    [9]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942

    [10]

    Rijnders G, Blank D H A 2008 Nat. Mater. 7 270

    [11]

    Cantoni C, Gazquez J, Miletto Granozio F, Oxley M P, Varela M, Lupini A R, Pennycook S J, Aruta C, di Uccio U S, Perna P, Maccariello D 2012 Adv. Mater. 24 3952

    [12]

    Bark C W, Felker D A, Wang Y, Zhang Y, Jang H W, Folkman C M, Park J W, Baek S H, Zhou H, Fong D D, Pan X Q, Tsymbal E Y, Rzchowski M S, Eom C B 2011 Proc. Natl. Acad. Sci. USA 108 4720

    [13]

    Qiao L, Droubay T C, Varga T, Bowden M E, Shutthanandan V, Zhu Z, Chambers S A 2011 Phys. Rev. B 83 085408

    [14]

    Yoshimatsu K, Yasuhara R, Kumigashira H, Oshima M 2008 Phys. Rev. Lett. 101 026802

    [15]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405

    [16]

    Willmott P R, Pauli S A, Herger R, Schleptz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C, Yacoby Y 2007 Phys. Rev. Lett. 99 155502

    [17]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204

    [18]

    Janotti A, Bjaalie L, Gordon L, van de Walle C G 2012 Phys. Rev. B 86 86241108(R)

    [19]

    Lee J, Demkov A A 2008 Phys. Rev. B 78 193104

    [20]

    Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M, Willmott P R 2012 Nat. Commun. 3 932

    [21]

    Shi Y J, Wang S, Zhou Y, Ding H F, Wu D 2013 Appl. Phys. Lett. 102 071605

    [22]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [23]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [26]

    Zhu Y, Shi D N, Du C L, Shi Y G, Ma C L, Gong S J, Zhang K C, Yang Z Q 2011 J. Appl. Phys. 109 116102

    [27]

    Makov G, Payne M C 1995 Phys. Rev. B 51 4014

    [28]

    Baldereschi A, Baroni S, Resta R 1988 Phys. Rev. Lett. 61 734

    [29]

    Yang X P, Su H B 2103 Phys. Rev. B 87 205116

  • [1] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [2] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [3] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [4] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [5] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [7] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [8] Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan. N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study. Acta Physica Sinica, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [9] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [12] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [13] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [18] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] Kim Sung-Chol, Huang Zu-Fei, Ming Xing, Wang Chun-Zhong, Meng Xing, Chen Gang. Effect of bivalent metal element doping on the electronic transport properties of LiCoO2. Acta Physica Sinica, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
Metrics
  • Abstract views:  6028
  • PDF Downloads:  211
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2017
  • Accepted Date:  10 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回