Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A cellular automaton model for electrocardiogram considering the structure of heart

Zhang Xue-Liang Tan Hui-Li Tang Guo-Ning Deng Min-Yi

Citation:

A cellular automaton model for electrocardiogram considering the structure of heart

Zhang Xue-Liang, Tan Hui-Li, Tang Guo-Ning, Deng Min-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The electrocardiogram (ECG) has broad applications in clinical diagnosis and prognosis of cardiovascular diseases. The accurate description for the question how the ECG come from the cardiac electrical activity is helpful for understanding the corresponding relation between the ECG waveform and cardiovascular disease. Experience is the primary method of studying the ECG, but the computer simulation method makes it more convenient to explore the effect of given factor for ECG waveform. Cellular automaton is a simple and effective computer simulation method. However, the cellular automaton model considering the main structure of the heart is not yet established. Therefore, we propose a cellular automaton model for the ECG considering the atria, the ventricle, and the ventricular septum. With this model, the conduction of the myocardial electrical activation is simulated by following the field potentials under healthy and diseased conditions, and the underlying mechanisms are analyzed. Through the computer simulations and analyses the results are obtained as follows. First, the conduction process of the electrical signal in this model is the same as that in the real heart. Second, under the healthy conditions, the behavior of the field potential appears as normal ECG, in which the P wave and the QRS wave group come from the depolarization of the atria and ventricle, respectively, on the other hand, the T wave and J wave come from the repolarization of the ventricle. The computer results support the conclusion that the J wave appears just because the existence of the notch in the epicardial transmembrane potential curve. Third, the endocardium ischemia conditions result in the T wave inversion. The mechanism is that the action potential duration of the ischemic endocardial cells is shorter than that under normal conditions, which makes larger the transmembrane potential gradient between the endocardium and the subepicardium, and then contributes a more negative value to the field potential. Fourth, the epicardium ischemia leads to the higher T wave, and this is because the shorter action potential duration of the ischemic epicardial cells brings in a larger transmembrane potential gradient between the epicardium and subepicardium, which makes the field voltage larger. Fifth, the T wave appears earlier under the through-wall ischemia. The action potential durations of cells of the endocardium, the epicardium, and the subepicardium all become shorter under the through-wall ischemia, then the repolarization processes of all of these three walls are ended earlier, which leads to the earlier T wave. The cellular automaton model proposed in this paper provides a reference for the further study of ECG.
      Corresponding author: Deng Min-Yi, dengminyi@mailbox.gxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003, 11565005, 11647309).
    [1]

    Yang X L, Liu G Z, Tong Y H, Yan H, Xu Z, Chen Q, Liu X, Zhang H H, Wang H B, Tan S H 2015 J. Geriatr. Cardiol. 12 448

    [2]

    Singh R, Murphy J J 2015 Anaesthesia and Intensive Care Medicine 16 220

    [3]

    Khalid U, Birnbaum Y 2016 Ann. Noninvas. Electr. 21 202

    [4]

    Namana V, Patel J, Tripathi N, Mathur P 2016 QJM-Int. J. Med. 109 559

    [5]

    Hwang C, Levis J T 2014 Perm. J. 18 e133

    [6]

    Andersson H B, Hansen M B, Thorsberger M, Srensen T B, Nielsen J B, Graff C, Pehrson S, Svendsen J H 2015 J. Electrocardiol. 48 834

    [7]

    Atienza F A, Carrin J R, Alberola A G, Alvarez J R, Muoz J J S, Snchez J M, Chvarri M V 2005 Rev. Esp. Cardiol. 58 41

    [8]

    Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese)[袁国勇, 张焕, 王光瑞2012物理学报61 160502]

    [9]

    Liu G Q, Ying H P 2014 Chin. Phys. B 23 050502

    [10]

    He D H, Hu G, Zhan M, Ren W, Gao Z 2002 Phys. Rev. E 65 055204

    [11]

    Zhang H, Chen J X, Li Y Q, Xu J R 2006 J. Chem. Phys. 125 204503

    [12]

    Liu G Q, Ying H P, Luo H L, Liu X X, Yang J H 2016 Int. J. Bifurcat. Chaos 26 1650236

    [13]

    Chen J X, Mao J W, Hu B B, Xu J R, He Y F, Li Y, Yuan X P 2009 Phys. Rev. E 79 066209

    [14]

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501 (in Chinese)[王春妮, 马军2013物理学报62 084501]

    [15]

    Chen J X, Peng L, Ma J, Ying H P 2014 Europhys. Lett. 107 38001

    [16]

    Trudel M C, Dub B, Potse M, Gulrajani R M, Leon L J 2004 IEEE Trans. Bio-med. Eng. 51 1319

    [17]

    Aslanidi O V, Clayton R H, Lambert J L, Holden A V 2005 J. Theor. Biol. 237 369

    [18]

    Schenone E, Collin A, Gerbeau J F 2015 Chin. Phys. B 24 142

    [19]

    Wolfram S 1984 Nature 311 419

    [20]

    Moe G K, Rheinboldt W C, Abildskov J A 1964 Am. Heart J. 67 200

    [21]

    Bollacker K D, Simpson E V, Johnson G A, Walcott G P 1991 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Orlando, Florida, USA, October 31November 3, 1991 p627

    [22]

    Makowiec D 2010 Int. J. Mod. Phys. C 21 107

    [23]

    Deng M Y, Dai J Y, Zhang X L 2015 Chin. Phys. B 24 142

    [24]

    Drouin E, Charpentier F, Gauthier C, Laurent K, Le M H 1995 J. Am. Coll. Cardiol. 26 185

    [25]

    Antzelevitch C 2001 Cardiovasc. Res. 50 426

    [26]

    Yu C G, Bai R, Chen D L, Huang Y 2008 Cardiac Electrophysiology Foundation and Clinic (Wuhan:Huazhong University of Science Technology Press) p168(in Chinese)[余承高, 白融, 陈栋梁, 黄勇2008心脏电生理学基础与临床(武汉:华中科技大学出版社)第168页]

    [27]

    Zhu H, Sun Y, Rajagopal G, Mondry A, Dhar P Biomed. Eng. Online 3 29

    [28]

    Tinniswood A D, Furse C M, Gandhi O P 1998 Phys. Med. Biol. 43 2361

    [29]

    Hlaing T, DiMino T, Kowey P R, Yan G X Circulation 110 1036

    [30]

    Yan G X, Joshi A, Guo D L, Hlaing T, Martin J, Xu X P, Kowey P R 2004 Circulation 110 1036

    [31]

    Di Diego J M, Antzelevitch C 2014 J. Electrocardiol. 47 486

    [32]

    Holland R P, Brooks H 1977 Am. J. Cardiol. 40 110

    [33]

    Zhao S Y, Wang D W, Shen Y, Li L, Zhang H 2008 J. Clin. Exp. Med. 7 89 (in Chinese)[赵淑艳, 王道伟, 沈毅, 李莉, 张红2008临床和实验医学杂志7 89]

  • [1]

    Yang X L, Liu G Z, Tong Y H, Yan H, Xu Z, Chen Q, Liu X, Zhang H H, Wang H B, Tan S H 2015 J. Geriatr. Cardiol. 12 448

    [2]

    Singh R, Murphy J J 2015 Anaesthesia and Intensive Care Medicine 16 220

    [3]

    Khalid U, Birnbaum Y 2016 Ann. Noninvas. Electr. 21 202

    [4]

    Namana V, Patel J, Tripathi N, Mathur P 2016 QJM-Int. J. Med. 109 559

    [5]

    Hwang C, Levis J T 2014 Perm. J. 18 e133

    [6]

    Andersson H B, Hansen M B, Thorsberger M, Srensen T B, Nielsen J B, Graff C, Pehrson S, Svendsen J H 2015 J. Electrocardiol. 48 834

    [7]

    Atienza F A, Carrin J R, Alberola A G, Alvarez J R, Muoz J J S, Snchez J M, Chvarri M V 2005 Rev. Esp. Cardiol. 58 41

    [8]

    Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese)[袁国勇, 张焕, 王光瑞2012物理学报61 160502]

    [9]

    Liu G Q, Ying H P 2014 Chin. Phys. B 23 050502

    [10]

    He D H, Hu G, Zhan M, Ren W, Gao Z 2002 Phys. Rev. E 65 055204

    [11]

    Zhang H, Chen J X, Li Y Q, Xu J R 2006 J. Chem. Phys. 125 204503

    [12]

    Liu G Q, Ying H P, Luo H L, Liu X X, Yang J H 2016 Int. J. Bifurcat. Chaos 26 1650236

    [13]

    Chen J X, Mao J W, Hu B B, Xu J R, He Y F, Li Y, Yuan X P 2009 Phys. Rev. E 79 066209

    [14]

    Wang C N, Ma J 2013 Acta Phys. Sin. 62 084501 (in Chinese)[王春妮, 马军2013物理学报62 084501]

    [15]

    Chen J X, Peng L, Ma J, Ying H P 2014 Europhys. Lett. 107 38001

    [16]

    Trudel M C, Dub B, Potse M, Gulrajani R M, Leon L J 2004 IEEE Trans. Bio-med. Eng. 51 1319

    [17]

    Aslanidi O V, Clayton R H, Lambert J L, Holden A V 2005 J. Theor. Biol. 237 369

    [18]

    Schenone E, Collin A, Gerbeau J F 2015 Chin. Phys. B 24 142

    [19]

    Wolfram S 1984 Nature 311 419

    [20]

    Moe G K, Rheinboldt W C, Abildskov J A 1964 Am. Heart J. 67 200

    [21]

    Bollacker K D, Simpson E V, Johnson G A, Walcott G P 1991 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Orlando, Florida, USA, October 31November 3, 1991 p627

    [22]

    Makowiec D 2010 Int. J. Mod. Phys. C 21 107

    [23]

    Deng M Y, Dai J Y, Zhang X L 2015 Chin. Phys. B 24 142

    [24]

    Drouin E, Charpentier F, Gauthier C, Laurent K, Le M H 1995 J. Am. Coll. Cardiol. 26 185

    [25]

    Antzelevitch C 2001 Cardiovasc. Res. 50 426

    [26]

    Yu C G, Bai R, Chen D L, Huang Y 2008 Cardiac Electrophysiology Foundation and Clinic (Wuhan:Huazhong University of Science Technology Press) p168(in Chinese)[余承高, 白融, 陈栋梁, 黄勇2008心脏电生理学基础与临床(武汉:华中科技大学出版社)第168页]

    [27]

    Zhu H, Sun Y, Rajagopal G, Mondry A, Dhar P Biomed. Eng. Online 3 29

    [28]

    Tinniswood A D, Furse C M, Gandhi O P 1998 Phys. Med. Biol. 43 2361

    [29]

    Hlaing T, DiMino T, Kowey P R, Yan G X Circulation 110 1036

    [30]

    Yan G X, Joshi A, Guo D L, Hlaing T, Martin J, Xu X P, Kowey P R 2004 Circulation 110 1036

    [31]

    Di Diego J M, Antzelevitch C 2014 J. Electrocardiol. 47 486

    [32]

    Holland R P, Brooks H 1977 Am. J. Cardiol. 40 110

    [33]

    Zhao S Y, Wang D W, Shen Y, Li L, Zhang H 2008 J. Clin. Exp. Med. 7 89 (in Chinese)[赵淑艳, 王道伟, 沈毅, 李莉, 张红2008临床和实验医学杂志7 89]

  • [1] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [3] Zheng Liang, Ma Shou-Feng, Jia Ning. The cellular automaton model of traffic flow based on the driving behavior. Acta Physica Sinica, 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [4] Sheng Peng, Zhao Shu-Long, Wang Jun-Feng, Zuo Hang. Study of temporary traffic bottleneck based on cellular automaton model. Acta Physica Sinica, 2010, 59(6): 3831-3840. doi: 10.7498/aps.59.3831
    [5] Xue Yu, Wen Jian, Tian Huan-Huan, Kan San-Jun. Study on the energy consumption of cellular automaton FI model for mixed traffic flow. Acta Physica Sinica, 2010, 59(11): 7693-7700. doi: 10.7498/aps.59.7693
    [6] Song Yu-Rong, Jiang Guo-Ping. Research of malware propagation in complex networks based on 1-D cellular automata. Acta Physica Sinica, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [7] Yue Hao, Shao Chun-Fu, Yao Zhi-Sheng. Pedestrian evacuation flow simulation based on cellular automata. Acta Physica Sinica, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [8] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [9] Tian Huan-Huan, Xue Yu, Kang San-Jun, Liang Yu-Juan. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Physica Sinica, 2009, 58(7): 4506-4513. doi: 10.7498/aps.58.4506
    [10] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [11] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [12] Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [13] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [18] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
Metrics
  • Abstract views:  6131
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2017
  • Accepted Date:  10 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回