Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical research on an efficient population transfer based on two different laser pulse sequences

Zhang Lu Yan Lu-Yao Bao Hui-Han Chai Xiao-Qian Ma Dan-Dan Wu Qian-Nan Xia Ling-Chen Yao Dan Qian Jing

Citation:

Theoretical research on an efficient population transfer based on two different laser pulse sequences

Zhang Lu, Yan Lu-Yao, Bao Hui-Han, Chai Xiao-Qian, Ma Dan-Dan, Wu Qian-Nan, Xia Ling-Chen, Yao Dan, Qian Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A quantum gas of ultracold molecules, with long-range and anisotropic interactions, will enable a series of fundamental studies in physics and chemistry. In particular, samples of ground-state molecules at ultralow temperatures and high number densities will facilitate the explorations of a large number of many-body physical phenomena and applications in quantum information processing. However, due to the lack of efficiently cooling techniques such as laser cooling for atomic gases, high number densities for ultracold molecular samples are not readily attainable. Associating ultracold atoms to weakly bound dimer molecules via Feshbach resonance and subsequently transferring them to a wanted molecular ro-vibronic ground state by a stimulated Raman adiabatic passages (STIRAP) have proved to be an effective way in producing ideal ultracold molecular samples. As a typical illustration, in a recent study (2010 Nat. Phys. 6 265) Danzl et al. experimentally realized the preparation of Cs2 molecule into its ro-vibronic ground state via two different multi-level STIRAPs:one is based on a single conversion route and the others are based on a cascade-connected route (labeled by 4p-STIRAP and s-STIRAP, respectively). In this work, we present a theoretical study for these two STIRAP schemes, focusing on the differences in physical principle and realistic performance between them. On the one hand, according to the theoretical approach of quasi-dark eigenstates, we conclude that a highly efficient population transfer is achievable in both schemes. On the other hand, by systematically studying the influences of the relevant parameters, including the spontaneous decays and the detunings from the intermediate states, and the temporal sequence and the amplitude of the laser pulses, we disclose their respective advantages and weaknesses in the realistic implementation. We theoretically predict that for both schemes their maximal conversion efficiencies each can attain 0.97 as long as the spontaneous decays from the intermediate excited states are sufficiently suppressed. Yet considering the fact that the already implemented efficiency is only around 0.6 for both schemes, there is still room for optimization, e.g. using stable Rydberg energy levels in future experiment. Furthermore, the success of these two schemes can provide a new route to the controllable entanglement preparation, opening more applications in the fields of quantum logic gate and so on.
      Corresponding author: Qian Jing, jqian1982@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474094, 11104076).
    [1]

    Gaubatz U, Rudecki P, Schiemann S, Bergmann K 1990 J. Chem. Phys. 92 5363

    [2]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006

    [3]

    Yun J, Li C, Chung H, Choi J, Cho M 2015 Chem. Phys. Lett. 627 20

    [4]

    Vewinger F, Heinz M, Garcia-Fernandez R, Vitanov N V, Bergmann K 2003 Phys. Rev. Lett. 91 213001

    [5]

    Toyoda K, Uchida K, Noguchi A, Haze S, Urabe S 2013 Phys. Rev. A 87 052307

    [6]

    Qian J, Zhang W, Ling H Y 2010 Phys. Rev. A 81 013632

    [7]

    Zhai J, Zhang L, Zhang K, Qian J, Zhang W 2015 J. Opt. Soc. Am. B 32 2164

    [8]

    Di Stefano P G, Paladino E, Pope T J, Falci G 2016 Phys. Rev. A 93 051801

    [9]

    Jamonneau P, Htet G, Drau, Roch J F, Jacques V 2016 Phys. Rev. Lett. 116 043603

    [10]

    Yale C G, Buckley B B, Christle D, Burkard G, Heremans F J, Bassett L C, Awschalom D D 2013 PNAS 110 7595

    [11]

    Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M Ngerl H C 2010 Nat. Phys. 6 265

    [12]

    Chen T, Zhu S, Li X, Qian J, Wang Y 2014 Phys. Rev. A 89 063402

    [13]

    Mller D, Srensen J L, Thomsen J B, Drewsen M 2007 Phys. Rev. A 76 062321

    [14]

    Webster S C, Weidt S, Lake K, McLoughlin J J, Hensinger W K 2013 Phys. Rev. Lett 111 140501

    [15]

    Theuer H, Bergmann K 1998 Eur. Phys. J. D 2 279

    [16]

    Kulin S, Saubamea B, Peik E, Lawall J, Hijmans T W, Leduc M, Cohen-Tannoudji C 1997 Phys. Rev. Lett. 78 4185

    [17]

    Nlleke C, Neuzner A, Reiserer A, Hahn C, Rempe G, Ritter S 2013 Phys. Rev. Lett. 110 140403

    [18]

    Novikov S, Sweeney T, Robinson J E, Premaratne S P, Suri B, Wellstood F C, Palmer B S 2008 Nat. Phys. 4 622

    [19]

    Ospelkaus S, Pe'Er A, Ni K K, Zirbel J J, Neyenhuis B,Kotochigova S, Jin D S 2008 Nat. Phys. 4 622

    [20]

    Ni K K, Ospelkaus S, de Miranda M H G, Pe'Er A, Neyenhuis B, Zirbel J J, Ye J 2008 Science 322 231

    [21]

    Lang F, Winkler K, Strauss C, Grimm R, Denschlag J H 2008 Phys. Rev. Lett. 101 133005

    [22]

    Stellmer S, Pasquiou B, Grimm R, Schreck F 2012 Phys. Rev. Lett. 109 115302

    [23]

    Shore B W 2011 Manipulating Quantum Structures Using Laser Pulses (Cambridge: Cambridge University Press) pp57-60

    [24]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Inouye S 2010 Phys. Rev. Lett. 105 203001

    [25]

    Molony P K, Gregory P D, Ji Z, Lu B, Kppinger M P, Le Sueur C R, Cornish S L 2014 Phys. Rev. Lett. 113 255301

    [26]

    Ji Z, Zhang H, Wu J, Yuan J, Yang Y, Zhao Y, Jia S 2012 Phys. Rev. A 85 013401

    [27]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [28]

    Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Wang D 2016 Phys. Rev. Lett. 116 205303

    [29]

    Ciamei A, Bayerle A, Chen C C, Pasquiou B, Schreck F 2017 Phys. Rev. A 96 013406

    [30]

    Liao W T, Plffy A, Keitel C H 2011 Phys. Lett. B 705 134

    [31]

    Oreg J, Bergmann K, Shore B W, Rosenwaks S 1992 Phys. Rev. A 45 4888

    [32]

    Viteau M, Chotia A, Allegrini M, Bouloufa N, Dulieu O, Comparat D, Pillet P 2008 Science 321 232

    [33]

    Klein J, Beil F, Halfmann T 2007 Phys. Rev. Lett. 99 113003

    [34]

    Du Y X, Liang Z T, Huang W, Yan H, Zhu S L 2014 Phys. Rev. A 90 023821

    [35]

    Pu H, Maenner P, Zhang W, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [36]

    Meystre P 2001 Atom Optics (New York: Springer Science Business Media) pp4-7

    [37]

    Butscher B, Bendkowsky V, Nipper J, Balewski J B, Kukota L, Lw R, Rost J M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184004

    [38]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Lw R, Pfau T 2009 Nature 458 1005

    [39]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Weinfurter H 2006 Phys. Rev. Lett. 96 030404

    [40]

    Zhen B Y, Huai Z W, Shi B Z 2010 Chin. Phys. B 19 094205

  • [1]

    Gaubatz U, Rudecki P, Schiemann S, Bergmann K 1990 J. Chem. Phys. 92 5363

    [2]

    Vitanov N V, Rangelov A A, Shore B W, Bergmann K 2017 Rev. Mod. Phys. 89 015006

    [3]

    Yun J, Li C, Chung H, Choi J, Cho M 2015 Chem. Phys. Lett. 627 20

    [4]

    Vewinger F, Heinz M, Garcia-Fernandez R, Vitanov N V, Bergmann K 2003 Phys. Rev. Lett. 91 213001

    [5]

    Toyoda K, Uchida K, Noguchi A, Haze S, Urabe S 2013 Phys. Rev. A 87 052307

    [6]

    Qian J, Zhang W, Ling H Y 2010 Phys. Rev. A 81 013632

    [7]

    Zhai J, Zhang L, Zhang K, Qian J, Zhang W 2015 J. Opt. Soc. Am. B 32 2164

    [8]

    Di Stefano P G, Paladino E, Pope T J, Falci G 2016 Phys. Rev. A 93 051801

    [9]

    Jamonneau P, Htet G, Drau, Roch J F, Jacques V 2016 Phys. Rev. Lett. 116 043603

    [10]

    Yale C G, Buckley B B, Christle D, Burkard G, Heremans F J, Bassett L C, Awschalom D D 2013 PNAS 110 7595

    [11]

    Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M Ngerl H C 2010 Nat. Phys. 6 265

    [12]

    Chen T, Zhu S, Li X, Qian J, Wang Y 2014 Phys. Rev. A 89 063402

    [13]

    Mller D, Srensen J L, Thomsen J B, Drewsen M 2007 Phys. Rev. A 76 062321

    [14]

    Webster S C, Weidt S, Lake K, McLoughlin J J, Hensinger W K 2013 Phys. Rev. Lett 111 140501

    [15]

    Theuer H, Bergmann K 1998 Eur. Phys. J. D 2 279

    [16]

    Kulin S, Saubamea B, Peik E, Lawall J, Hijmans T W, Leduc M, Cohen-Tannoudji C 1997 Phys. Rev. Lett. 78 4185

    [17]

    Nlleke C, Neuzner A, Reiserer A, Hahn C, Rempe G, Ritter S 2013 Phys. Rev. Lett. 110 140403

    [18]

    Novikov S, Sweeney T, Robinson J E, Premaratne S P, Suri B, Wellstood F C, Palmer B S 2008 Nat. Phys. 4 622

    [19]

    Ospelkaus S, Pe'Er A, Ni K K, Zirbel J J, Neyenhuis B,Kotochigova S, Jin D S 2008 Nat. Phys. 4 622

    [20]

    Ni K K, Ospelkaus S, de Miranda M H G, Pe'Er A, Neyenhuis B, Zirbel J J, Ye J 2008 Science 322 231

    [21]

    Lang F, Winkler K, Strauss C, Grimm R, Denschlag J H 2008 Phys. Rev. Lett. 101 133005

    [22]

    Stellmer S, Pasquiou B, Grimm R, Schreck F 2012 Phys. Rev. Lett. 109 115302

    [23]

    Shore B W 2011 Manipulating Quantum Structures Using Laser Pulses (Cambridge: Cambridge University Press) pp57-60

    [24]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Inouye S 2010 Phys. Rev. Lett. 105 203001

    [25]

    Molony P K, Gregory P D, Ji Z, Lu B, Kppinger M P, Le Sueur C R, Cornish S L 2014 Phys. Rev. Lett. 113 255301

    [26]

    Ji Z, Zhang H, Wu J, Yuan J, Yang Y, Zhao Y, Jia S 2012 Phys. Rev. A 85 013401

    [27]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302

    [28]

    Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Wang D 2016 Phys. Rev. Lett. 116 205303

    [29]

    Ciamei A, Bayerle A, Chen C C, Pasquiou B, Schreck F 2017 Phys. Rev. A 96 013406

    [30]

    Liao W T, Plffy A, Keitel C H 2011 Phys. Lett. B 705 134

    [31]

    Oreg J, Bergmann K, Shore B W, Rosenwaks S 1992 Phys. Rev. A 45 4888

    [32]

    Viteau M, Chotia A, Allegrini M, Bouloufa N, Dulieu O, Comparat D, Pillet P 2008 Science 321 232

    [33]

    Klein J, Beil F, Halfmann T 2007 Phys. Rev. Lett. 99 113003

    [34]

    Du Y X, Liang Z T, Huang W, Yan H, Zhu S L 2014 Phys. Rev. A 90 023821

    [35]

    Pu H, Maenner P, Zhang W, Ling H Y 2007 Phys. Rev. Lett. 98 050406

    [36]

    Meystre P 2001 Atom Optics (New York: Springer Science Business Media) pp4-7

    [37]

    Butscher B, Bendkowsky V, Nipper J, Balewski J B, Kukota L, Lw R, Rost J M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184004

    [38]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Lw R, Pfau T 2009 Nature 458 1005

    [39]

    Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Weinfurter H 2006 Phys. Rev. Lett. 96 030404

    [40]

    Zhen B Y, Huai Z W, Shi B Z 2010 Chin. Phys. B 19 094205

  • [1] Tan Wei-Han, Zhao Chao-Ying, Guo Qi-Zhi. Entanglement criterion of N qubit system. Acta Physica Sinica, 2023, 72(1): 010301. doi: 10.7498/aps.72.20221524
    [2] Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao. Research on method of constant false alarm rate of entangled state quantum detection system. Acta Physica Sinica, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [3] Research on Constant False Alarm Detection Method of Entangled State Quantum Detection System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211121
    [4] Zhang Chun-Ling, Liu Wen-Wu. Fast implementation of four-dimensional entangled state in separately coupled cavities via shortcut to adiabatic passage. Acta Physica Sinica, 2018, 67(16): 160302. doi: 10.7498/aps.67.20180315
    [5] Qin Yan, Li Sheng-Chang. Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field. Acta Physica Sinica, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [6] Ren Chun-Nian, Shi Peng, Liu Kai, Li Wen-Dong, Zhao Jie, Gu Yong-Jian. Effects of initial states on continuous-time quantum walk in the optical waveguide array. Acta Physica Sinica, 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [7] Wang Rong, Xiu Jun-Ling, Niu Ying-Yu. Population transfer of HF molecules in the ground electronic state through multiphoton transition. Acta Physica Sinica, 2013, 62(9): 093301. doi: 10.7498/aps.62.093301
    [8] Fan Hong-Yi, Li Xue-Chao. The physical significances and applications of Schmidt decompositions of continuum bipartile entangled state representation. Acta Physica Sinica, 2012, 61(20): 200301. doi: 10.7498/aps.61.200301
    [9] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [10] Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui. Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B. Acta Physica Sinica, 2012, 61(9): 090301. doi: 10.7498/aps.61.090301
    [11] Niu Ying-Yu, Wang Rong, Xiu Jun-Ling. Rovibrational population transfer controlled by two overlapping pulses. Acta Physica Sinica, 2012, 61(9): 093302. doi: 10.7498/aps.61.093302
    [12] Zhang Wen-Zhao, Li Wen-Dong, Shi Peng, Gu Yong-Jian. Protocol for deterministic entanglement concentration of three pairs of partially entangled particles. Acta Physica Sinica, 2011, 60(6): 060303. doi: 10.7498/aps.60.060303
    [13] Bing He, He Rui. A new quantum teleportation protocal. Acta Physica Sinica, 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [14] Meng Shao-Ying, Wu Wei. Adiabatic fidelity for atom-dimer conversion system in stimulated Raman adiabatic passage. Acta Physica Sinica, 2009, 58(8): 5311-5317. doi: 10.7498/aps.58.5311
    [15] Ren Ji-Gang, Zhang Han, Cai Xin-Dong, Yin Juan, Zhou Fei, Peng Cheng-Zhi. Design of high brightness entangled source based on periodically poled KTiOPO4 crystal. Acta Physica Sinica, 2009, 58(8): 5169-5173. doi: 10.7498/aps.58.5169
    [16] Liang Hua-Qiu, Liu Jin-Ming. Remote state preparation with bipartite entangled states in noisy environments. Acta Physica Sinica, 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [17] Li Ti-Jun. Integration over entangled state projective operators. Acta Physica Sinica, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [18] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [19] Shen Jian-Qi, Zhuang Fei. The nonadiabatic conditional geometric phase shift in a coiled fiber system. Acta Physica Sinica, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [20] Zhou Yan-Wei, Ye Cun-Yun, Lin Qiang, Wang Yu-Zhu. Control of population and atomic coherence by adiabatic rapid passage. Acta Physica Sinica, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
Metrics
  • Abstract views:  5791
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2017
  • Accepted Date:  11 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回